Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions

Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions

Download the Big Ideas Math Book Answer Key Grade 5 Chapter 10 Divide Fractions free of cost and kick start your preparation immediately. You will get the necessary skill set needed to solve the problems related to fractions here. Access Detailed Solutions to all the problems and learn how to solve related problems when you encounter them during your exams. Seek Homework Help needed by accessing the Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions.

Big Ideas Math Book Answer Key Grade 5 Chapter 10 Divide Fractions

Cross Check the Solutions from our Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions and understand the areas you are facing difficulty. Score higher grades in your exams and refer to Big Ideas Math Book Solution Key Grade 5 Chapter 10 Divide Fractions to have strong command over fractions.

Lesson: 1 Interpret Fractions as Division

Lesson: 1 Interpret Fractions as Division

Lesson: 2 Mixed Numbers as Quotients

Lesson: 2 Mixed Numbers as Quotients

Lesson: 3 Divide Whole Numbers by Unit Fractions

Divide Whole Numbers by Unit Fractions

Lesson: 4 Divide Unit Fractions by Whole Numbers

Lesson: 5 Problem Solving: Fraction Division

Chapter: 10 – Divide Fractions

Lesson 10.1 Interpret Fractions as Division

Explore and Grow`

You share 4 sheets of construction paper equally among 8 people. Write a division expression that represents the situation. What fraction of a sheet of paper does each person get? Use a model to support your answer?
Answer:
The division expression that represents the fraction of a sheet of paper does each person get is:
4 ÷ 8 = \(\frac{1}{2}\)

Explanation:
It is given that you have 4 sheets of construction paper equally among 8 people.
Hence,
The division expression that represents the fraction of a sheet of paper is:
( The number of sheets of construction paper ) ÷ ( The number of people )
= 4 ÷ 8
= \(\frac{1}{2}\)
Hence, from the above,
We can conclude that the fraction of a sheet of paper does each person get is: \(\frac{1}{2}\)

Structure
How can you check your answer using multiplication?
Answer: We can check the answer by using the partial products method or by using the simplification method.

Think and Grow: Divide Whole Numbers
You can use models to divide whole numbers that have a fraction as the quotient.
Answer: 
From the above model,
The number of colored parts is: 4
The total number of parts are: 8
So,
The fraction of the colored part out of the total number of parts = 4 ÷ 8
= \(\frac{4}{8}\) = \(\frac{1}{2}\)
In \(\frac{1}{2}\),
1 represents the quotient
2 represents the remainder
Example
Find 2 ÷ 3.
One Way: Use a tape diagram. Show 2 wholes. Divide each whole into 3 equal parts.

Another Way: Use an area model. Show 2 wholes. Divide each whole into 3 equal parts. Then separate the parts into 3 equal groups.

Show and Grow

Divide. Use a model to help

Question 1.
2 ÷ 4 =0.5
Answer:
From the above model,
The number of colored parts is: 2
The number of total parts is: 4
So,
The fraction of the colored parts out of the total number of parts = 2 ÷ 4
= \(\frac{2}{4}\)
= \(\frac{1}{2}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.5

Question 2.
1 ÷ 3 = 0.33
Answer:

From the above model,
The number of colored parts is: 1
The number of total parts is: 3
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 3
= \(\frac{1}{3}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.33

Apply and Grow: Practice

Divide. Use a model to help.

Question 3.
1 ÷ 8 =0.018
Answer:
From the above model,
The number of colored parts is: 1
The number of total parts is: 8
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 8
= \(\frac{1}{8}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.018

Question 4.
1 ÷ 4 =0.25
Answer:
From the above model,
The number of colored parts is: 1
The number of total parts is: 4
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 4
= \(\frac{1}{4}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.25

Question 5.
2 ÷ 6 =0.33
Answer:
From the above model,
The number of colored parts is: 2
The number of total parts is: 6
So,
The fraction of the colored parts out of the total number of parts = 2 ÷ 6
= \(\frac{2}{6}\)
= \(\frac{1}{3}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.33

Question 6.
2 ÷ 5 = 0.4
Answer:
From the above model,
The number of colored parts is: 2
The number of total parts is: 5
So,
The fraction of the colored parts out of the total number of parts = 2 ÷ 5
= \(\frac{2}{5}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.4

Question 7.
3 ÷ 7 = 0.42
Answer: 
From the above model,
The number of colored parts is: 3
The number of total parts is: 7
So,
The fraction of the colored parts out of the total number of parts = 3 ÷ 7
= \(\frac{3}{7}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.42

Question 8.
5 ÷ 6 = 0.83
Answer:
From the above model,
The number of colored parts is: 5
The number of total parts is: 6
So,
The fraction of the colored parts out of the total number of parts = 5 ÷ 6
= \(\frac{5}{6}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.83

Question 9.
How many 6s are in 1?
Answer: There are six \(\frac{1}{6}\)s in 1

Explanation:
The number of 6s in 1 can be obtained by dividing 1 into 6 equal parts.
So,
The figure obtained will be like;

From the above model,
The number of colored parts is: 1
The number of total parts is: 6
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 6
= \(\frac{1}{6}\)
Hence, from the above,
We can conclude that there are six 6s in 1

Question 10.
How many 10s are in 9?
Answer: There are 9 \(\frac{9}{10}\)s in 9

Explanation:
The model for the number of 10s in 9 are:

From the above model,
The number of colored parts is: 9
The number of total parts is: 10
So,
The fraction of the colored parts out of the total number of parts = 9 ÷ 10
= \(\frac{9}{10}\)
Hence, from the above,
We can conclude that there are nine 9s in 10

Question 11.
Number Sense
For which equations does k = 8?
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 3
Answer: Let the equations named A), B), C), and D)
So,
The four equations are:
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 3
From the above equations,
The value ‘k’ must be in the numerator.
So,
In A), the value of the numerator is: 3
In B), the value of the numerator is: k
In C), the value of the numerator is: 2
In D) the value of the numerator is: 8
So,
From the above numerator values,
We can say that “k=8” holds good for Equation B)

Question 12.
Writing
Write and solve a real-life problem for 7 ÷ 12.
Answer:
From the above model,
The number of colored parts is: 7
The number of total parts is: 12
So,
The fraction of the colored parts out of the total number of parts = 7 ÷ 12
= \(\frac{7}{12}\)
Hence,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.58

Think and Grow: Modeling Real Life

Example
Three fruit bars are shared equally among 4 friends. What fraction of a fruit bar does each friend get?
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 4
Divide 3 by 4 to find what fraction of a fruit bar each friend gets.
Use an area model to find 3 ÷ 4. Show 3 whole fruit bars. Divide each fruit bar into 4 equal parts. Then separate the parts into 4 equal groups.

Show and Grow

Question 13.
You cut a 5-foot streamer into 6 pieces of equal size. What is the length of each piece in feet? in inches?
Answer: The length of each piece in feet is: \(\frac{5}{6}\)

Explanation:
It is given that you cut a 5-foot streamer into 6 equal pieces of equal size.
So,
The model representing the 6 equal pieces of the 5-foot streamer is:

From the above model,
We can see that each part in the model represents \(\frac{5}{6}\) of each part.
Hence, from the above,
We can conclude that the length of each piece of a 5-foot streamer in feet is: \(\frac{5}{6}\)

Question 14.
Four circular lemon slices are shared equally among 8 glasses of water. What fraction of a lemon slice does each glass get?
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 7
Answer: The fraction of a lemon slice does each glass get is: \(\frac{1}{2}\)

Explanation:
It is given that the four circular lemon slices are shared equally among 8 glasses of water.
So,
The model representing the portion that each glass get is:

From the above model,
We can say that each part represents \(\frac{1}{2}\) part
Hence, from the above,
We can conclude that the portion of a lemon slice does glass get is: \(\frac{1}{2}\)

Question 15.
You cut a 5-foot streamer into 6 pieces of equal size. What is the length of each piece in feet? in inches?
Answer: The length of each piece in feet is: \(\frac{5}{6}\)

Explanation:
It is given that you cut a 5-foot streamer into 6 equal pieces of equal size.
So,
The model representing the 6 equal pieces of the 5-foot streamer is:

From the above model,
We can see that each part in the model represents \(\frac{5}{6}\) of each part.
Hence, from the above,
We can conclude that the length of each piece of a 5-foot streamer in feet is: \(\frac{5}{6}\)

Question 16.
DIG DEEPER!
A fruit drink is made using \(\frac{7}{4}\) quarts of orange juice and \(\frac{5}{4}\) quarts of pineapple juice. The drink is shared equally among 12 guests. What fraction of a quart does each guest get?
Answer: The fraction of a quart does each guest get is: \(\frac{1}{4}\)

Explanation:
It is given that a fruit drink is made using \(\frac{7}{4}\) quarts of orange juice and \(\frac{5}{4}\) quarts of pineapple juice.
So,
The total amount of fruit juice= \(\frac{7}{4}\) + \(\frac{5}{4}\)
= \(\frac{ 7 + 5}{4}\)
= \(\frac{12}{4}\)
It is also given that the drink is shared equally among 12 guests
So,
The fraction of a quart does each gust get = \(\frac{12}{4}\) ÷ 12
= \(\frac{12}{4}\) ÷ \(\frac{12}{1}\)
= \(\frac{12}{4}\) × \(\frac{1}{12}\)
= \(\frac{1}{4}\)
Hence, from the above,
We can conclude that the fraction of a quart does each person get is: \(\frac{1}{4}\)

Interpret Fractions as Division Homework & Practice 10.1

Divide. Use a model to help.

Question 1.
1 ÷ 6 =0.16
Answer:


From the above model,
The number of colored parts is: 1
The number of total parts is: 6
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 6
= \(\frac{1}{6}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.16

Question 2.
1 ÷ 7 =0.14
Answer:
From the above model,
The number of colored parts is: 1
The number of total parts is: 7
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 7
= \(\frac{1}{7}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.14

Question 3.
1 ÷ 5 = 0.20
Answer:
From the above model,
The number of colored parts is: 1
The number of total parts is: 5
So,
The fraction of the colored parts out of the total number of parts = 1 ÷ 5
= \(\frac{1}{5}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.20

Question 4.
3 ÷ 4 = 0.75
Answer:
From the above model,
The number of colored parts is: 3
The number of total parts is: 4
So,
The fraction of the colored parts out of the total number of parts = 3 ÷ 4
= \(\frac{3}{4}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.75

Question 5.
6 ÷ 7 = 0.85
Answer:
From the above model,
The number of colored parts is: 6
The number of total parts is: 7
So,
The fraction of the colored parts out of the total number of parts = 6 ÷ 7
= \(\frac{6}{7}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.85

Question 6.
5 ÷ 9 = 0.55
Answer:
From the above model,
The number of colored parts is: 5
The number of total parts is: 9
So,
The fraction of the colored parts out of the total number of parts = 5 ÷ 9
= \(\frac{5}{9}\)
So,
The fraction of the colored parts out of the total number of parts in the decimal form is: 0.55

Question 7.
YOU BE THE TEACHER
Your friend says \(\frac{5}{12}\) is equivalent to 12 ÷ 5. Is your friend correct? Explain.
Answer: No, your friend s not correct.

Explanation:
The given fraction is: \(\frac{5}{12}\)
From the given fraction,
The numerator is: 5
The denominator is: 12
We can write a fraction in the following form:
Fraction = \(\frac{Numerator}{Denominator}\)
So,
\(\frac{5}{12}\) is equivalent to 5 ÷ 12
But, according to your friend,
\(\frac{5}{12}\) is equivalent to 12 ÷ 5
Hence, from the above,
we can conclude that your friend is not correct.

Question 8.
Writing
Explain how fractions and division are related.

Question 9.
Structure
Write a division equation represented by the model.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 8
Answer:
The division equation represented by the model is: 1 ÷ 4

Explanation:
The given model is:
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 8
From the given model,
The number of shaded parts is: 1
The total number of parts are: 4
So,
The division equation can be represented as:
Division equation = (The number of shaded parts) ÷ ( The total number of parts )
= 1 ÷ 4
= \(\frac{1}{4}\)

Question 10.
Number Sense
Eight friends share multiple vegetable pizzas, and each gets \(\frac{3}{8}\) of a pizza. How many pizzas do they share?
Answer: The total number of pizzas the eight friends shared are: 3 pizzas

Explanation:
It is given that the eight friends share multiple vegetable pizzas and each gets \(\frac{3}{8}\) of a pizza.
So,
The total number of pizzas shared by the eight friends = \(\frac{3}{8}\) × 8
= \(\frac{3}{8}\) × \(\frac{8}{1}\)
= \(\frac{3 × 8}{8 × 1}\)
= \(\frac{3}{1}\)
= 3
Hence, from the above,
We can conclude that the total number of pizzas shared by the eight friends is: 3 pizzas

Question 11.
Modeling Real Life
Seven friends each run an equal part of a 5-kilometer relay race. What fraction of a kilometer does each friend complete?
Answer: The fraction of a kilometer does each friend complete is: \(\frac{5}{7}\) kilometer

Explanation:
It is given that there are seven friends each run an equal part of a 5-kilometer relay race.
So,
The fraction that each friend run = \(\frac{The total distance} {The number of friends}\)
= \(\frac{5}{7}\)
Hence, from the above,
We can conclude that the fraction of a kilometer does each friend complete is: \(\frac{5}{7}\) kilometer

Question 12.
Modeling Real Life
A group of friends equally share 3 bags of pretzels. Each friend gets \(\frac{3}{5}\) of a bag of pretzels. How many friends are in the group?
Answer: The total number of friends in the group are: 5

Explanation:
It is given that a group of friends equally share 3 bags of pretzels and each friend gets \(\frac{3}{5}\) of a bag of pretzels.
So,
The total number of friends = \(\frac{The total number of bags}{The amount each friend gets}\)
= \(\frac{3}{1}\) × \(\frac{5}{3}\)
= \(\frac{5}{1}\)
= 5
Hence, from the above,
We can conclude that the total number of friends are: 5

Review & Refresh

Multiply.

Question 13.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 9
Answer: 9 × \(\frac{2}{3}\) = 6

Explanation:
The given fractions are: \(\frac{9}{1}\) and \(\frac{2}{3}\)
So,
\(\frac{9}{1}\) × \(\frac{2}{3}\)
= \(\frac{9 × 2}{1 × 3}\)
= \(\frac{6}{1}\)
= 6
Hence,
9 × \(\frac{2}{3}\) = 6

Question 14.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 10
Answer: 5 × \(\frac{7}{10}\) = \(\frac{7}{2}\)

Explanation:
The given fractions are: \(\frac{5}{1}\) and \(\frac{7}{10}\)
So,
\(\frac{5}{1}\) × \(\frac{7}{10}\)
= \(\frac{5 × 7}{1 × 10}\)
= \(\frac{7}{2}\)
Hence,
5 × \(\frac{7}{10}\) = \(\frac{7}{2}\)

Question 15.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 11
Answer: 3 × \(\frac{5}{12}\) = \(\frac{5}{4}\)

Explanation:
The given fractions are: \(\frac{3}{1}\) and \(\frac{5}{12}\)
So,
\(\frac{3}{1}\) × \(\frac{5}{12}\)
= \(\frac{3 × 5}{1 × 12}\)
= \(\frac{5}{4}\)
Hence,
3 × \(\frac{5}{12}\) = \(\frac{5}{4}\)

Lesson 10.2 Mixed Numbers as Quotients

Explore and Grow

You share 6 sheets of construction paper equally among 4 people. Write a division expression that represents the situation. How much paper does each person get? Use a model to support your answer.
Answer:
The division expression representing the situation is: 6 ÷ 4

Explanation:
It s given that you have shared 6 sheets of construction paper equally among 4 people
So,
The division equation representing the sharing of construction papers is: 6 ÷ 4
Now,
6 ÷ 4 = \(\frac{6}{4}\)
So,
The above equation represents that 4 is divided into 6 parts.
So,
The model representing the situation is:

From the above model,
We can say that the amount of does each person get is: 1\(\frac{1}{2}\) or 1.5 or \(\frac{3}{2}\)

Precision
Does each person get less than or more than 1 sheet of paper? Use the dividend and divisor to explain why your answer makes sense.
Answer:
From the above problem,
We can say that each person gets more than 1 paper.
So,
The division equation of the above problem is: 6 ÷ 4
The equivalent form of 6 ÷ 4 is: \(\frac{6}{4}\)
Now,
The simplest form of \(\frac{6}{4}\) is: \(\frac{3}{2}\) ( The simplest form is the division of the numerator and the denominator with the common multiple if we can divide)
The mixed form of \(\frac{3}{2}\) is: 1\(\frac{1}{2}\)

Think and Grow: Divide Whole Numbers

You can use models to divide whole numbers that have a mixed number as the quotient.
Example
Find 3 ÷ 2.
One Way:
Use a tape diagram. Show 3 wholes. Divide each whole into 2 equal parts.

Another Way: Use an area model. Show 3 wholes. Divide each whole into 2 equal parts. Then separate the parts into 2 equal groups.

Show and Grow

Divide. Use a model to help

Question 1.
5 ÷ 3 = ___
Answer: 5 ÷ 3 = 1\(\frac{2}{3}\)

Explanation;
The given division equation is: 5 ÷ 3
The model representing the division equation is:

From the above model,
5 ÷ 3 = 3 ÷ 3
= 1 R 2
Hence,
We can say that each part is divided into 1\(\frac{2}{3}\) or \(\frac{5}{3}\)

Question 2.
7 ÷ 2 = ___

Answer: 7 ÷ 2 = 3\(\frac{1}{2}\)

Explanation;
The given division equation is: 7 ÷ 2
The model representing the division equation is:

From the above model,
7 ÷ 2 = 6 ÷ 2
= 3 R 1
Hence,
We can say that each part is divided into 3\(\frac{1}{2}\) or \(\frac{7}{2}\) or 3.5

Apply and Grow: Practice

Divide. Use a model to help.

Question 3.
12 ÷ 7 = ___

Answer: 12 ÷ 7 = 1\(\frac{5}{7}\)

Explanation;
The given division equation is: 12 ÷ 7
The model representing the division equation is:

From the above model,
12 ÷ 7 = 7 ÷ 7
= 1 R 5
Hence,
We can say that each part is divided into 1\(\frac{5}{7}\) or \(\frac{12}{7}\)

Question 4.
25 ÷ 20 = ___

Answer: 25 ÷ 20 = 1\(\frac{5}{20}\) = \(\frac{5}{4}\)

Explanation;
The given division equation is: 25 ÷ 20
The model representing the division equation is:

From the above model,
25 ÷ 20 = 20 ÷ 20
= 1 R 5
Hence,
We can say that each part is divided into 1\(\frac{5}{20}\) or \(\frac{5}{4}\)

Question 5.
15 ÷ 4 = ___

Answer: 15 ÷ 4 = 3\(\frac{3}{4}\)

Explanation;
The given division equation is: 15 ÷ 4
The model representing the division equation is:

From the above model,
15 ÷ 4 = 12 ÷ 4
= 3 R 3
Hence,
We can say that each part is divided into 3\(\frac{3}{4}\) or \(\frac{15}{4}\)

Question 6.
13 ÷ 6 = ___

Answer: 13 ÷ 6 = 2\(\frac{1}{6}\)

Explanation;
The given division equation is: 13÷ 6
The model representing the division equation is:

From the above model,
13 ÷ 6 = 12 ÷ 6
= 2 R 1
Hence,
We can say that each part is divided into 2\(\frac{1}{6}\) or \(\frac{13}{6}\)

Question 7.
16 ÷ 8 = ___

Answer: 16 ÷ 8 = 2

Explanation;
The given division equation is: 16÷ 8
The model representing the division equation is:

From the above model,
16 ÷ 8
= 2 R 0
Hence,
We can say that each part is divided into 2 equal parts

Question 8.
92 ÷ 50 = ___

Answer: 92 ÷ 50 = 1\(\frac{21}{25}\)

Explanation;
The given division equation is: 92÷ 50
So,
92 ÷ 50 = 50 ÷ 50
= 1 R 42
Hence,
We can say that each part is divided into 1\(\frac{42}{50}\) or 1\(\frac{21}{25}\)

Question 9.
How many 3s are in 7?
Answer: The number of 3 in 7 are: \(\frac{7}{3}\) or 2\(\frac{1}{3}\)

Explanation:
The division equation is: 7 ÷ 3
So,
The model for the given division equation is:

From the above model,
7 ÷ 3 = 6 ÷ 3
= 2 R 1
Hence, from the above,
We can conclude that there are 2\(\frac{1}{3}\) 3s in 7

Question 10.
How many 6s are in 21?
Answer: The number of 6s in 21 are: \(\frac{21}{6}\) or 3\(\frac{3}{6}\)

Explanation:
The division equation is: 21 ÷ 6
So,
The model for the given division equation is:

From the above model,
21 ÷ 6 = 18 ÷ 6
= 3 R 3
Hence, from the above,
We can conclude that there are 3\(\frac{3}{6}\) 3s in 21

Question 11.
YOU BE THE TEACHER
Your friend says that \(\frac{35}{6}\) is equivalent to 35 ÷ 6. Is your friend correct? Explain.
Answer: Yes, your friend is correct

Explanation:
It is given that \(\frac{35}{6}\)
We know that,
The decimal equation can be converted into a fraction as \(\frac{Numerator}{Denominator}\)
So,
\(\frac{35}{6}\) = 35 ÷ 6
Hence, from the above,
We can conclude that your friend is correct

Question 12.
Writing
Write and solve a real-life problem for 24 ÷ 5.
Answer: 24 ÷ 5 = 4\(\frac{4}{5}\)

Explanation;
The given division equation is: 24÷ 5
The model for the above division equation is:

From the above model,
24 ÷ 5 = 20 ÷ 5
= 4 R 4
Hence,
We can say that each part is divided into 4\(\frac{4}{5}\)

Think and Grow: Modeling Real Life

Example
You share 7 bales of hay equally among 3 horse stalls. How many whole bales are in each stall? What fractional amount of a bale is in each stall?
Divide 7 by 3 to find how many bales of hay are in each stall. Use an area model to help.

Show and Grow

Question 13.
Six muffins are shared equally among 4 friends. How many whole muffins does each friend get? What fractional amount of a muffin does each friend get?
Answer: Each friend will get 1 muffin and 2 muffins are leftovers
The fractional part of a muffin does each friend get is: \(\frac{1}{2}\)

Explanation:
It is given that there are six muffins are shared equally among 4 friends.
So,
The number of muffins each friend get = 6 ÷ 4
= 4 ÷ 4
= 1 R 2
Hence, from the above,
We can conclude that each friend gets 1 muffin each and the fraction of each muffin get is: \(\frac{1}{2}\)

Question 14.
A cyclist bikes 44 miles in 5 days. She bikes the same distance each day. Does she bike more than 8\(\frac{1}{2}\) miles each day? Explain.
Answer: She bikes more than 8\(\frac{1}{2}\) miles each day.

Explanation:
It is given that a cyclist bikes 44 miles in 5 days.
So,
The distance that she bikes each day = 44 ÷ 5
So,
44 ÷ 5 = 40 ÷ 5
= 8 R 4
= 8\(\frac{4}{5}\) miles
But, it is given that she bikes 8\(\frac{1}{2}\) miles each day
Hence, from the above,
We can conclude that she bikes more than 8\(\frac{1}{2}\) miles each day.

Question 15.
DIG DEEPER!
At Table A, 4 students share 7 packs of clay equally. At Table B, 5 students share 8 packs of clay equally. At which table does each student get a greater amount of clay? Explain.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 15
Answer: At Table A, each student gets a greater amount of clay.

Explanation:
It is given that at Table A, 4 students share 7 packs of clay equally.
So,
The representation of clay at table A is: \(\frac{7}{4}\)
It is also given that at Table B, 5 students share 8 packs of clay equally.
So,
The representation of clay at table B is: \(\frac{8}{5}\)
So,
For comparison, equate the denominators.
So,
Multiply the first fraction at table A by \(\frac{5}{5}\) and the fraction at table B by \(\frac{4}{4}\)
So,
\(\frac{7}{4}\) × \(\frac{5}{5}\)
= \(\frac{35}{20}\)
So,
\(\frac{8}{5}\) × \(\frac{4}{4}\)
= \(\frac{32}{20}\)
Hence, from the above,
We can conclude that at table A, the students will get more amount of clay.

Mixed Numbers as Quotients Homework & Practice 10.2

Divide. Use a model to help.

Question 1.
5 ÷ 2 = ___
Answer: 5 ÷ 2 = 2\(\frac{1}{2}\)

Explanation;
The given division equation is: 5 ÷ 2
The model representing the division equation is:

From the above model,
5 ÷ 2 = 4 ÷ 2
= 2 R 1
Hence,
We can say that 5 ÷ 2 = 2\(\frac{1}{2}\) or 2.5 or \(\frac{5}{2}\)

Question 2.
10 ÷ 7 = ___
Answer: 10 ÷ 7 = 1\(\frac{3}{7}\) = \(\frac{10}{7}\)

Explanation;
The given division equation is: 10 ÷ 7
The model representing the division equation is:

From the above model,
10 ÷ 7 = 7 ÷ 7
= 1 R 3
Hence,
We can say that 10 ÷ 7 = 1\(\frac{3}{7}\) or \(\frac{10}{7}\)

Question 3.
3 ÷ 9 = ___
Answer: 3 ÷ 9 = \(\frac{1}{3}\)

Explanation;
The given division equation is: 3 ÷ 9
The model representing the division equation is:

From the above model,
3 and 9 are the multiples of 3.
So,
3 ÷ 9 = \(\frac{1}{3}\)
Hence,
We can say that 3 ÷ 9 = \(\frac{1}{3}\)

Question 4.
11 ÷ 4 = ___
Answer: 11 ÷ 4 = 2\(\frac{3}{4}\)

Explanation;
The given division equation is: 11 ÷ 4
The model representing the division equation is:

From the above model,
11 ÷ 4 = 8 ÷ 4
= 2 R 3
Hence,
We can say that 11 ÷ 4 = \(\frac{11}{4}\) or 2\(\frac{3}{4}\)

Question 5.
13 ÷ 6 = ___
Answer: 13 ÷ 6 = 2\(\frac{1}{6}\)

Explanation;
The given division equation is: 13 ÷ 6
The model representing the division equation is:

From the above model,
13 ÷ 6 = 12 ÷ 6
= 2 R 1
Hence,
We can say that 13 ÷ 6 = \(\frac{13}{6}\) or 2\(\frac{1}{6}\)

Question 6.
45 ÷ 8 = ___
Answer: 45 ÷ 8 = 5\(\frac{5}{8}\)

Explanation;
The given division equation is: 45 ÷ 8
The model representing the division equation is:

From the above model,
45 ÷ 8 = 40 ÷ 8
= 5 R 5
Hence,
We can say that 45 ÷ 8 = \(\frac{45}{8}\) or 5\(\frac{5}{8}\)

Question 7.
Number Sense
Between which two whole numbers is the quotient of 74 and 9?
Answer: The quotient of 74 and 9 is between 8 and 9

Explanation:
The given two numbers are 7 and 9
So,
By using the partial quotients method,
74 ÷ 9= 72 ÷ 9
= 8 R 2
So,
74 ÷ 9 = \(\frac{74}{9}\) or 8\(\frac{2}{9}\) or 8.3
Hence, from the above,
We can conclude that the quotient of 74 and 9 is between 8 and 9

Question 8.
Reasoning
Three friends want to share 22 baseball cards. For this situation, why does the quotient 7 R1 make more sense than the quotient 7\(\frac{1}{3}\)?
Answer:
It is given that three friends want to share 22 baseball cards.
So,
We have to find the number of baseball cards each friend possesses.
So,
It is sufficient to write the number of baseball cards possessed by each friend in the remainder form rather than the fraction form.
So,
The number of baseball cards possessed by each friend = \(\frac{The total number of baseball cards}{The number of friends}\)
= 22 ÷ 3
= 21 ÷ 3
= 7 R 1
Hence, from the above,
We can conclude that the remainder form is sufficient to find the number of baseball cars possessed by each friend rather than the fraction form.

Question 9.
DIG DEEPER!
Is \(\frac{2}{5}\) × 3 equivalent to 2 × 3 ÷ 5? Explain.
Answer: Yes, \(\frac{2}{5}\) × 3 equivalent to 2 × 3 ÷ 5

Explanation:
The given fraction and the number is: \(\frac{2}{5}\) and 3
So,
\(\frac{2}{5}\) × 3 = \(\frac{2}{5}\) × \(\frac{3}{1}\)
= \(\frac{2 × 3}{5}\)
= 2 × 3 ÷ 5
Hence, from the above,
We can conclude that \(\frac{2}{5}\) × 3 equivalent to 2 × 3 ÷ 5

Question 10.
Modeling Real Life
A bag of 4 balls weighs 6 pounds. Each ball weighs the same amount. What is the weight of each ball?
Answer: The weight of each ball is: \(\frac{3}{2}\) pounds or 1.5 pounds

Explanation:
It is given that a bag of 4 balls weighs 6 pounds
So,
The weight of each ball = \(\frac{The total weight of the balls}{The number of balls}\)
= 6 ÷ 4
Since 6 and 4 are the multiples of 2, divide the two numbers by 2
So,
6 ÷ 4 = 3 ÷ 2
So,
3 ÷ 2 = 2 ÷ 2
= 1 R 1
= 1\(\frac{1}{2}\) pounds
Hence, from the above,
We can conclude that the weight of each ball is: 1\(\frac{1}{2}\) pounds or 1.5 pounds

Question 11.
Modeling Real Life
Zookeepers order 600 pounds of bamboo for the pandas. The bamboo lasts 7 days. How many whole pounds of bamboo do the pandas eat each day? What fractional amount of a pound do the pandas eat each day?
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 17
Answer:
The amount of bamboos the pandas eat each day is around 85 pounds
The amount of bamboos the pandas eat each day in the fraction form is: 85\(\frac{5}{7}\)

Explanation:
It is given that zookeepers order 600 pounds of bamboo for the pandas and the bamboos last 7 days for the pandas
So,
The number of bamboos the pandas eat each day = 600 ÷ 7
So,
By using the partial quotients method,
600 ÷ 7 = ( 560 + 35 ) ÷ 7
= ( 560 ÷ 7 ) + ( 35 ÷ 7 )
= 80 + 5
= 85 R 5
Hence, from the above,
We can conclude that
The amount of bamboos the pandas eat each day is around 85 pounds
The amount of bamboos the pandas eat each day in the fraction form is: 85\(\frac{5}{7}\)

Question 12.
Modeling Real Life
A plumber has 20 feet of piping. He cuts the piping into 6 equal pieces. Is each piece greater than, less than, or equal to 3\(\frac{1}{2}\) feet?
Answer: Each piece is less than 3\(\frac{1}{2}\) feet

Explanation:
It is given that a plumber has 20 feet of piping and he cuts the piping into 6 equal pieces.
So,
The length of each piece = 20 ÷ 6
By using the partial quotients method,
20 ÷ 6 = 18 ÷ 6
= 3 R 2
So,
20 ÷ 6 = 3\(\frac{2}{6}\)
Now,
3\(\frac{1}{2}\) = \(\frac{7}{2}\)
3\(\frac{2}{6}\) = \(\frac{20}{6}\)
For comparison, we have to equate whether the denominators or the numerators.
So,
Multiply 3\(\frac{1}{2}\) with \(\frac{3}{3}\)
So,
3\(\frac{1}{2}\) = \(\frac{21}{6}\)
Hence, from the above,
We can conclude that each piece is less than 3\(\frac{1}{2}\) feet

Review & Refresh

Add.

Question 13.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 18
Answer: \(\frac{2}{9}\) + \(\frac{2}{3}\) = \(\frac{8}{9}\)

Explanation:
The two given fractions are: \(\frac{2}{9}\) and \(\frac{2}{3}\)
So, in addition, we have to make either the numerators or the denominators equal
So,
Multiply \(\frac{2}{3}\)  with \(\frac{3}{3}\)
So,
\(\frac{2}{3}\)  = \(\frac{6}{9}\)
Hence, from the above,
We can conclude that \(\frac{2}{9}\) + \(\frac{2}{3}\) = \(\frac{8}{9}\)

Question 14.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 19
Answer: \(\frac{1}{10}\) + \(\frac{3}{4}\) = \(\frac{34}{40}\)

Explanation:
The two given fractions are: \(\frac{1}{10}\) and \(\frac{3}{4}\)
So, in addition, we have to make either the numerators or the denominators equal
So,
Multiply \(\frac{1}{10}\)  with \(\frac{4}{4}\)
Multiply \(\frac{3}{4}\)  with \(\frac{10}{10}\)
So,
\(\frac{1}{10}\)  = \(\frac{4}{40}\)
\(\frac{3}{4}\)  = \(\frac{30}{40}\)
Hence, from the above,
We can conclude that \(\frac{1}{10}\) + \(\frac{3}{4}\) = \(\frac{34}{40}\)

Question 15.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 20
Answer: \(\frac{3}{5}\) + \(\frac{5}{6}\) + \(\frac{1}{5}\) = \(\frac{49}{30}\)

Explanation:
The three given fractions are: \(\frac{3}{5}\) , \(\frac{5}{6}\) and \(\frac{1}{5}\)
So, in addition, we have to make either the numerators or the denominators equal
So,
Multiply \(\frac{3}{5}\)  with \(\frac{6}{6}\)
Multiply \(\frac{5}{6}\)  with \(\frac{5}{5}\)
Multiply \(\frac{1}{5}\)  with \(\frac{6}{6}\)
So,
\(\frac{3}{5}\)  = \(\frac{18}{30}\)
\(\frac{5}{6}\)  = \(\frac{25}{30}\)
\(\frac{1}{5}\)  = \(\frac{6}{30}\)
Hence, from the above,
We can conclude that \(\frac{3}{5}\) + \(\frac{5}{6}\) +\(\frac{1}{5}\)  = \(\frac{49}{30}\)

Lesson 10.3 Divide Whole Numbers by Unit Fractions

Explore and Grow

Write a real-life problem that can be represented by 6 ÷ \(\frac{1}{2}\)?
Answer:
Suppose, we have an apple and there are 6 children and we are giving each child half of the piece.
So,
Each child receives 6 ÷ \(\frac{1}{2}\) piece of the apple

What is the solution to the problem? Use a model to support your answer?
Answer:
The above problem is the division of an apple among the six children
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
The amount each child receive from an apple = 6 ÷ \(\frac{1}{2}\)
= 6 × \(\frac{2}{1}\)
= \(\frac{6}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 6 × 2}{1 × 1}\)
= 12

Structure
How can you check your answer using multiplication?
Answer:
We can check the answer using multiplication by the two rules regarding division and multiplication. They are:
A) a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
B) a= \(\frac{a}{1}\)

Think and Grow: Divide Whole Numbers by Unit Fractions

You can use models to divide whole numbers by unit fractions.
Example
Find 4 ÷ \(\frac{1}{3}\)
One Way:
Use a tape diagram to find how many \(\frac{1}{3}\)s are in 4. There are 4 wholes.
Divide each whole into 3 equal parts. Each part is \(\frac{1}{3}\).
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 21
Because there are 3 one-thirds in 1 whole, there are
4 × 3 equal parts = 12 one-thirds in 4 wholes.

Show and Grow

Divide. Use a model to help

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 23
Answer: 3 ÷ \(\frac{1}{2}\) = 6

Explanation:
The given numbers are: 3 and \(\frac{1}{2}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
3 ÷ \(\frac{1}{2}\)  = 3 × \(\frac{2}{1}\)
= \(\frac{3}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 3 × 2}{1 × 1}\)
= 6
Hence,
3÷ \(\frac{1}{2}\) = 6

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 24
Answer: 2 ÷ \(\frac{1}{5}\) = 10

Explanation:
The given numbers are: 2 and \(\frac{1}{5}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
2 ÷ \(\frac{1}{5}\)  = 2 × \(\frac{5}{1}\)
= \(\frac{5}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 5 × 2}{1 × 1}\)
= 10
Hence,
2÷ \(\frac{1}{5}\) = 10

Apply and Grow: Practice

Divide. Use a model to help.

Question 3.

Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 25
Answer: 1 ÷ \(\frac{1}{3}\) = 3

Explanation:
The given numbers are: 1 and \(\frac{1}{3}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
1 ÷ \(\frac{1}{3}\)  = 1 × \(\frac{3}{1}\)
= \(\frac{3}{1}\) × \(\frac{1}{1}\)
= \(\frac{ 3 × 1}{1 × 1}\)
= 3
Hence,
1÷ \(\frac{1}{3}\) = 3

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 26
Answer: 3 ÷ \(\frac{1}{5}\) = 15

Explanation:
The given numbers are: 3 and \(\frac{1}{5}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
3 ÷ \(\frac{1}{5}\)  = 3 × \(\frac{5}{1}\)
= \(\frac{3}{1}\) × \(\frac{5}{1}\)
= \(\frac{ 3 × 5}{1 × 1}\)
= 15
Hence,
3÷ \(\frac{1}{5}\) = 15

Question 5.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 27
Answer: 5 ÷ \(\frac{1}{3}\) = 15

Explanation:
The given numbers are: 5 and \(\frac{1}{3}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
5 ÷ \(\frac{1}{3}\)  = 5 × \(\frac{3}{1}\)
= \(\frac{3}{1}\) × \(\frac{5}{1}\)
= \(\frac{ 3 × 5}{1 × 1}\)
= 15
Hence,
5÷ \(\frac{1}{3}\) = 15

Question 6.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 28
Answer: 4 ÷ \(\frac{1}{4}\) = 16

Explanation:
The given numbers are: 4 and \(\frac{1}{4}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
4 ÷ \(\frac{1}{4}\)  = 4 × \(\frac{4}{1}\)
= \(\frac{4}{1}\) × \(\frac{4}{1}\)
= \(\frac{ 4 × 4}{1 × 1}\)
= 16
Hence,
4÷ \(\frac{1}{4}\) = 16

Question 7.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 29
Answer: 7 ÷ \(\frac{1}{2}\) = 14

Explanation:
The given numbers are: 7 and \(\frac{1}{2}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
7 ÷ \(\frac{1}{2}\)  = 7 × \(\frac{2}{1}\)
= \(\frac{7}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 7 × 2}{1 × 1}\)
= 14
Hence,
7÷ \(\frac{1}{2}\) = 14

Question 8.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 30
Answer: 2 ÷ \(\frac{1}{7}\) = 14

Explanation:
The given numbers are: 2 and \(\frac{1}{7}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
2 ÷ \(\frac{1}{7}\)  = 2 × \(\frac{7}{1}\)
= \(\frac{2}{1}\) × \(\frac{7}{1}\)
= \(\frac{ 7 × 2}{1 × 1}\)
= 14
Hence,
2÷ \(\frac{1}{7}\) = 14

Question 9.
How many \(\frac{1}{4}\)s are in 5?
Answer: There are 20 \(\frac{1}{4}\)s in 5

Explanation:
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
Now,
We have to find the number of \(\frac{1}{4}\)s in 5
So,
5 ÷ \(\frac{1}{4}\)  = 5 × \(\frac{4}{1}\)
= \(\frac{5}{1}\) × \(\frac{4}{1}\)
= \(\frac{ 5 × 4}{1 × 1}\)
= 20
Hence, from the above,
We can conclude that there are 20 \(\frac{1}{4}\)s in 5.

Question 10.
How many \(\frac{1}{6}\)s are in 2?
Answer: There are 12 \(\frac{1}{6}\)s in 2

Explanation:
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
Now,
We have to find the number of \(\frac{1}{6}\)s in 2
So,
2 ÷ \(\frac{1}{6}\)  = 2 × \(\frac{6}{1}\)
= \(\frac{2}{1}\) × \(\frac{6}{1}\)
= \(\frac{ 2 × 6}{1 × 1}\)
= 12
Hence, from the above,
We can conclude that there are 12 \(\frac{1}{6}\)s in 2.

Question 11.
YOU BE THE TEACHER
Newton finds 6 ÷ \(\frac{1}{3}\). Is he correct? Explain.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 31
Answer: No, Newton is not correct

Explanation:
The given division equation is: 6 ÷ \(\frac{1}{3}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
6 ÷ \(\frac{1}{3}\)  = 6 × \(\frac{3}{1}\)
= \(\frac{6}{1}\) × \(\frac{3}{1}\)
= \(\frac{ 3 × 6}{1 × 1}\)
= 18
But, according to Newton,
6 ÷ \(\frac{1}{3}\) = 2
Hence, from the above,
We can conclude that Newton is not correct.

Question 12.
Writing
Write and solve a real-life problem for 4 ÷ \(\frac{1}{2}\).
Answer:
Suppose we have 4 bags of wheat and we have to distribute the 4 bags by dividing each bag of wheat in half
So,
Each person receives 4 ÷ \(\frac{1}{2}\) bag of wheat
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
4 ÷ \(\frac{1}{2}\)  = 4 × \(\frac{2}{1}\)
= \(\frac{4}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 4 × 2}{1 × 1}\)
= 8
Hence, from the above,
We can conclude that there are 8 bags of wheat when divide the 4 bags of wheat in half.

Think and Grow: Modeling Real Life

Example
A chef makes 3 cups of salsa. A serving of salsa is \(\frac{1}{8}\) cup. How many servings does the chef make?
To find the number of servings, find the number of \(\frac{1}{8}\) cups in 3 cups.
Use an area model to find 3 ÷ \(\frac{1}{8}\). Divide each cup into 8 equal parts.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 32

Show and Grow

Question 13.
A litter of kittens weighs a total of 2 pounds. Each newborn kitten weighs \(\frac{1}{4}\) pound. How many kittens are in the litter?
Answer: The number of kittens in the litter are: 8 kittens

Explanation:
It is given that a litter of kittens weighs a total of 2 pounds and each newborn kitten weighs \(\frac{1}{4}\) pound.
So,
The number of kittens in the litter = \(\frac{The total weight of litter}{The weight of each newborn kitten}\)
= 2 ÷ \(\frac{1}{4}\)
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
2 ÷ \(\frac{1}{4}\)  = 2 × \(\frac{4}{1}\)
= \(\frac{4}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 4 × 2}{1 × 1}\)
= 8
Hence, from the above,
We can conclude that the number of kittens in the litter are: 8 kittens

Question 14.
You put signs on a walking trail that is 7 miles long. You put a sign at the start and at the end of the trail. You also put a sign every \(\frac{1}{10}\) mile. How many signs do you put on the trail?
Answer: The total number of signs you put on the trail is: 72

Explanation:
It is given that you put signs on a walking trail that is 7 miles long and you put a sign at the start and at the end of the trail.
It is also given that you put a sign every \(\frac{1}{10}\) mile.
So,
The total number of signs you put on the trail = The sign at the start of the trail + The sign at the end of the trail + The total number of signs for \(\frac{1}{10}\) mile
Now,
The total number of signs for \(\frac{1}{10}\) mile = 7 ÷ \(\frac{1}{10}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
7 ÷ \(\frac{1}{10}\)  = 7 × \(\frac{10}{1}\)
= \(\frac{7}{1}\) × \(\frac{10}{1}\)
= \(\frac{ 7 × 10}{1 × 1}\)
= 70
So,
The total number of signs you put on the trail = 1 + 1 + 70
= 72
hence, from the above,
We can conclude that there are 72 signs that you put on the trail

Question 15.
DIG DEEPER!
You have 2 boards that are each 8 feet long. You cut \(\frac{1}{2}\)– foot pieces to make square picture frames. How many picture frames can you make?
Answer: The number of picture frames you can make is: 32

Explanation:
It is given that you have 2 boards that are each 8 feet long.
So,
The total length of 2 boards = 2 × 8 = 16 feet
It is also given that you cut \(\frac{1}{2}\)– foot pieces to make square picture frames.
So,
The total number of picture frames = \(\frac{The total length of 2 boards}{The length of each square frame}\)
= 16 ÷ \(\frac{1}{2}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
16 ÷ \(\frac{1}{2}\)  = 16 × \(\frac{2}{1}\)
= \(\frac{16}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 16 × 2}{1 × 1}\)
= 32
Hence, from the above,
We can conclude that we can make 32 picture frames.

Divide Whole Numbers by Unit Fractions Homework & Practice 10.3

Divide. Use a model to help.

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 33
Answer: 1 ÷ \(\frac{1}{9}\) = 9

Explanation:
The given numbers are: 1 and \(\frac{1}{9}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
1 ÷ \(\frac{1}{9}\)  = 1 × \(\frac{9}{1}\)
= \(\frac{1}{1}\) × \(\frac{9}{1}\)
= \(\frac{ 1 × 9}{1 × 1}\)
= 9
Hence,
1÷ \(\frac{1}{9}\) = 9

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 34
Answer: 2 ÷ \(\frac{1}{3}\) = 6

Explanation:
The given numbers are: 2 and \(\frac{1}{3}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
2 ÷ \(\frac{1}{3}\)  = 2 × \(\frac{3}{1}\)
= \(\frac{3}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 3 × 2}{1 × 1}\)
= 6
Hence,
2÷ \(\frac{1}{3}\) = 6

Question 3.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 35
Answer: 5 ÷ \(\frac{1}{2}\) = 10

Explanation:
The given numbers are: 5 and \(\frac{1}{2}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
5 ÷ \(\frac{1}{2}\)  = 5 × \(\frac{2}{1}\)
= \(\frac{5}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 5 × 2}{1 × 1}\)
= 10
Hence,
5÷ \(\frac{1}{2}\) = 10

Divide. Use a model to help.

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 36
Answer: 9 ÷ \(\frac{1}{4}\) = 36

Explanation:
The given numbers are: 9 and \(\frac{1}{4}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
9 ÷ \(\frac{1}{4}\)  = 9 × \(\frac{4}{1}\)
= \(\frac{9}{1}\) × \(\frac{4}{1}\)
= \(\frac{ 9 × 4}{1 × 1}\)
= 36
Hence,
9÷ \(\frac{1}{4}\) = 36

Question 5.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 37
Answer: 7 ÷ \(\frac{1}{3}\) = 21

Explanation:
The given numbers are: 7 and \(\frac{1}{3}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
7 ÷ \(\frac{1}{3}\)  = 7 × \(\frac{3}{1}\)
= \(\frac{3}{1}\) × \(\frac{7}{1}\)
= \(\frac{ 3 × 7}{1 × 1}\)
= 21
Hence,
7÷ \(\frac{1}{3}\) = 21

Question 6.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 38
Answer: 8 ÷ \(\frac{1}{5}\) = 40

Explanation:
The given numbers are: 8 and \(\frac{1}{5}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
8 ÷ \(\frac{1}{5}\)  = 8 × \(\frac{5}{1}\)
= \(\frac{8}{1}\) × \(\frac{5}{1}\)
= \(\frac{ 8 × 5}{1 × 1}\)
= 40
Hence,
8÷ \(\frac{1}{5}\) = 40

Question 7.
Number Sense
Explain how you can check your answer for Exercise 6.
Answer:
We can check the answer for exercise 6 by using the below model:

From the above model,
Each part represents \(\frac{8}{5}\)
So,
The total value of the 5 parts is: \(\frac{40}{5}\)
Hence,
In the above way, we can say that we check the answer

Question 8.
YOU BE THE TEACHER
Descartes finds 5 ÷ \(\frac{1}{4}\). Is he correct? Explain.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 38.1
Answer: Yes, he is correct

Explanation:
We can write 5 as \(\frac{20}{4}\) or \(\frac{5}{1}\)
But, we only take \(\frac{20}{4}\) because the divided number given is 4
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{20}{4}\) ÷ \(\frac{1}{4}\)
= \(\frac{20}{4}\) × \(\frac{4}{1}\)
= \(\frac{ 20 × 4}{4 × 1}\)
= 20
Hence, from the above,
We can conclude that Descartes is correct.

Question 9.
Modeling Real Life
You need \(\frac{1}{2}\) pound of clay to make a pinch pot. How many pinch pots can you make with 12 pounds of clay?
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 42
Answer: You can make 24 pinch pots with 12 pounds of clay

Explanation:
It is given that you need \(\frac{1}{2}\) pound of clay to make a pinch pot.
It is also given that you have 12 pounds of clay
So,
The number of pinch pots you can make by using 12 pounds of clay = \(\frac{The total amount of clay}{The amount of clay used to make each pinch pot}\)
= 12 ÷ \(\frac{1}{2}\)
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
12 ÷ \(\frac{1}{2}\)
= \(\frac{12}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 12 × 2}{4 × 1}\)
= 24
Hence, from the above,
We can conclude that we can make 24 pinch pots by using 12 pounds of clay.

Question 10.
Modeling Real Life
Your art teacher has 5 yards of yellow string and 4 yards of green string. She cuts both colors \(\frac{1}{3}\)-yard pieces to hang of string into student artwork. How many pieces of student artwork can she hang?
Answer: The number of pieces of student artwork she can hang is: 27

Explanation:
It is given that your art teacher has 5 yards of yellow string and 4 yards of green string.
So,
The total number of yards of string = 5 + 4 = 9 yards of string
It is also given that she cuts both colors \(\frac{1}{3}\)-yard pieces to hang of string into student artwork.
So,
The number of pieces of student artwork she can hang = \(\frac{The total number of yards of strings}{The length of each yard f string}\)
= 9 ÷ \(\frac{1}{3}\)
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
9 ÷ \(\frac{1}{3}\)
= \(\frac{9}{1}\) × \(\frac{3}{1}\)
= \(\frac{ 9 × 3}{1 × 1}\)
= 27
Hence, from the above,
We can conclude that there are 27 pieces of student artwork that she can hang.

Review & Refresh

Question 11.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 43
Answer: \(\frac{2}{5}\) × \(\frac{3}{4}\) = \(\frac{6}{20}\)

Explanation:
The given fractions are: \(\frac{3}{4}\) and \(\frac{2}{5}\)
So,
\(\frac{2}{5}\) × \(\frac{3}{4}\)
= \(\frac{2 × 3}{5 × 4}\)
= \(\frac{6}{20}\)
Hence,
\(\frac{2}{5}\) × \(\frac{3}{4}\) = \(\frac{6}{20}\)

Question 12.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 44
Answer: \(\frac{1}{8}\) × \(\frac{5}{8}\) = \(\frac{5}{64}\)

Explanation:
The given fractions are: \(\frac{1}{8}\) and \(\frac{5}{8}\)
So,
\(\frac{1}{8}\) × \(\frac{5}{8}\)
= \(\frac{1 × 5}{8 × 8}\)
= \(\frac{5}{64}\)
Hence,
\(\frac{1}{8}\) × \(\frac{5}{8}\) = \(\frac{5}{64}\)

Question 13.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 45
Answer: \(\frac{4}{9}\) × \(\frac{2}{7}\) = \(\frac{8}{63}\)

Explanation:
The given fractions are: \(\frac{4}{9}\) and \(\frac{2}{7}\)
So,
\(\frac{4}{9}\) × \(\frac{2}{7}\)
= \(\frac{2 × 4}{7 × 9}\)
= \(\frac{8}{63}\)
Hence,
\(\frac{4}{9}\) × \(\frac{2}{7}\) = \(\frac{8}{63}\)

Lesson 10.4 Divide Unit Fractions by Whole Numbers

Write a real-life problem that can be represented by \(\frac{1}{2}\) ÷ 3?
Answer:
Suppose we have 3 people and those 3 people each has to share \(\frac{1}{2}\) of the apple

What is the solution to the problem? Use a model to support your answer?
Answer:
The above problem is: We have to share \(\frac{1}{2}\) each for the 3 people
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{2}\) ÷ 3
= \(\frac{1}{2}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{2 × 3}\)
= \(\frac{1}{6}\)
Hence,
\(\frac{1}{6}\) is the solution to the above problem.

Precision
Is the answer greater than or less than 1? Explain?
Answer: The answer is less than 1

Explanation:
The answer for the problem is: \(\frac{1}{6}\)
So,
For the comparison of \(\frac{1}{6}\) with 1, we have to see whether the numerators or the denominators are equal or not
So, in this case, the numerators are equal
So, compare the denominators
So,
1 < 6
Hence, from the above,
We can conclude that \(\frac{1}{6}\) is less than 1

Think and Grow: Divide Unit Fractions by Whole Numbers

You can use models to divide unit fractions by whole numbers.

Show and Grow

Divide. Use a model to help.

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 48
Answer: \(\frac{1}{4}\) ÷ 2 = \(\frac{1}{8}\)

Explanation:
The given numbers are: \(\frac{1}{4}\) and 2
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{4}\) ÷ 2
= \(\frac{1}{4}\) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{2 × 4}\)
= \(\frac{1}{8}\)
Hence,
\(\frac{1}{4}\) ÷ 2 = \(\frac{1}{8}\)

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 49
Answer: \(\frac{1}{2}\) ÷ 5 = \(\frac{1}{10}\)

Explanation:
The given numbers are: \(\frac{1}{2}\) and 5
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{2}\) ÷ 5
= \(\frac{1}{2}\) × \(\frac{1}{5}\)
= \(\frac{ 1 × 1}{2 × 5}\)
= \(\frac{1}{10}\)
Hence,
\(\frac{1}{2}\) ÷ 5 = \(\frac{1}{10}\)

Apply and Grow: Practice

Divide. Use a model to help.

Question 3.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 50
Answer: \(\frac{1}{5}\) ÷ 3 = \(\frac{1}{15}\)

Explanation:
The given numbers are: \(\frac{1}{5}\) and 3
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{5}\) ÷ 3
= \(\frac{1}{5}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{5 × 3}\)
= \(\frac{1}{15}\)
Hence,
\(\frac{1}{5}\) ÷ 3 = \(\frac{1}{15}\)

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 51
Answer: \(\frac{1}{6}\) ÷ 2 = \(\frac{1}{12}\)

Explanation:
The given numbers are: \(\frac{1}{6}\) and 2
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{6}\) ÷ 2
= \(\frac{1}{6}\) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{2 × 6}\)
= \(\frac{1}{12}\)
Hence,
\(\frac{1}{6}\) ÷ 2 = \(\frac{1}{12}\)

Question 5.
Big Ideas Math Answer Key Grade 5 Chapter 10 Divide Fractions 52
Answer: \(\frac{1}{3}\) ÷ 5 = \(\frac{1}{15}\)

Explanation:
The given numbers are: \(\frac{1}{3}\) and 5
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{3}\) ÷ 5
= \(\frac{1}{3}\) × \(\frac{1}{5}\)
= \(\frac{ 1 × 1}{3 × 5}\)
= \(\frac{1}{15}\)
Hence,
\(\frac{1}{3}\) ÷ 5 = \(\frac{1}{15}\)

Question 6.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 53
Answer: \(\frac{1}{5}\) ÷ 4 = \(\frac{1}{20}\)

Explanation:
The given numbers are: \(\frac{1}{5}\) and 4
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{5}\) ÷ 4
= \(\frac{1}{5}\) × \(\frac{1}{4}\)
= \(\frac{ 1 × 1}{5 × 4}\)
= \(\frac{1}{20}\)
Hence,
\(\frac{1}{5}\) ÷ 4 = \(\frac{1}{20}\)

Question 7.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 54
Answer: \(\frac{1}{3}\) ÷ 3 = \(\frac{1}{9}\)

Explanation:
The given numbers are: \(\frac{1}{3}\) and 3
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{3}\) ÷ 3
= \(\frac{1}{3}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{3 × 3}\)
= \(\frac{1}{9}\)
Hence,
\(\frac{1}{3}\) ÷ 3 = \(\frac{1}{9}\)

Question 8.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 55
Answer: \(\frac{1}{8}\) ÷ 2 = \(\frac{1}{16}\)

Explanation:
The given numbers are: \(\frac{1}{8}\) and 2
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{8}\) ÷ 2
= \(\frac{1}{8}\) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{2 × 8}\)
= \(\frac{1}{16}\)
Hence,
\(\frac{1}{8}\) ÷ 2 = \(\frac{1}{16}\)

Question 9.
How many 6s are in \(\frac{1}{2}\)?
Answer: There are \(\frac{1}{12}\) 6s in \(\frac{1}{2}\)

Explanation:
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
Now,
We have to find the number of 6s in \(\frac{1}{2}\)
So,
\(\frac{1}{2}\) ÷ 6
= \(\frac{1}{2}\) × \(\frac{1}{6}\)
= \(\frac{ 1 × 1}{2 × 6}\)
= \(\frac{1}{12}\)
Hence, from the above,
We can conclude that there are \(\frac{1}{12}\) 6s in \(\frac{1}{2}\)

Question 10.
How many 2s are in \(\frac{1}{3}\) ?
Answer: There are \(\frac{1}{6}\) 2s in \(\frac{1}{3}\)

Explanation:
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
Now,
We have to find the number of 2s in \(\frac{1}{3}\)
So,
\(\frac{1}{3}\) ÷ 2
= \(\frac{1}{3}\) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{2 × 3}\)
= \(\frac{1}{6}\)
Hence, from the above,
We can conclude that there are \(\frac{1}{6}\) 2s in \(\frac{1}{2}\)

Question 11.
Writing
Write and solve a real-life problem for
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 56
Answer:
Suppose a box has 7 chocolates. We have to divide these seven chocolates into further \(\frac{1}{2}\) parts so that the chocolates can be distributed to more people
So,
The each part of chocolate we can get = \(\frac{1}{2}\) ÷ 7
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{2}\) ÷ 7
= \(\frac{1}{2}\) × \(\frac{1}{7}\)
= \(\frac{ 1 × 1}{2 × 7}\)
= \(\frac{1}{14}\)
Hence, from the above,
We can conclude that we can get \(\frac{1}{14}\) part of each chocolate.

Question 12.
Reasoning
Complete the statements.

Think and Grow: Modeling Real Life

You melt \(\frac{1}{4}\) quart of soap. You pour the soap into 4 of the same-sized molds. What fraction of a quart of soap does each mold hold?
You are dividing \(\frac{1}{4}\) quart into 4 equal parts, so you need to find \(\frac{1}{4}\) ÷ 4.

Show and Grow

Question 13.
You buy \(\frac{1}{2}\) pound of grapes. You equally divide the grapes into 2 bags. What fraction of a pound of grapes do you put into each bag?
Answer: The fraction of a pound of grapes you put into each bag is: \(\frac{1}{8}\) pound

Explanation:
It is given that you buy \(\frac{1}{2}\) pound of grapes.
It is also given that you equally divide the grapes into 2 bags.
So,
The number of grapes in each bag = \(\frac{1}{2}\) ÷ 2
Now,
The fraction of pound of grapes you put into each bag = \(\frac{The number of grapes in each bag}{2}\)
=  ( \(\frac{1}{2}\) ÷ 2 ) ÷ 2
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
( \(\frac{1}{2}\) ÷ 2 ) ÷ 2
= ( \(\frac{1}{2}\) × \(\frac{1}{2}\) ) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{2 × 2}\) × \(\frac{1}{2}\)
= \(\frac{1}{4}\) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{2 × 4}\)
= \(\frac{1}{8}\)
Hence, from the above
We can conclude that the fraction of pound of grapes in each bag is: \(\frac{1}{8}\) pound

Question 14.
You have \(\frac{1}{8}\) cup of red sand, \(\frac{1}{4}\) cup of blue sand, and \(\frac{1}{2}\) cup of white sand. You equally divide the sand into 3 containers. What fraction of a cup of sand do you pour into each container?
Answer: The fraction of a cup of sand you pour into each container is: \(\frac{7}{24}\)

Explanation:
It is given that you have \(\frac{1}{8}\) cup of red sand, \(\frac{1}{4}\) cup of blue sand, and \(\frac{1}{2}\) cup of white sand.
So,
The total amount of sand = \(\frac{1}{8}\) cup of red sand + \(\frac{1}{4}\) cup of blue sand + \(\frac{1}{2}\) cup of white sand
In addition, we have to see either the numerators are equal or the denominators are equal.
If the numerators are equal we have to ake the denominators also equal.
So,
\(\frac{1}{4}\) is multplied by \(\frac{2}{2}\)
\(\frac{1}{2}\) is multiplied by \(\frac{4}{4}\)
So,
\(\frac{1}{4}\) = \(\frac{2}{8}\)
\(\frac{1}{2}\) = \(\frac{4}{8}\)
So,
\(\frac{1}{8}\) + \(\frac{2}{8}\) + \(\frac{4}{8}\) = \(\frac{7}{8}\)
It is also given that all the sand is equally distributed into 3 containers
So,
The amount of sand in each container = \(\frac{7}{8}\) ÷ 3
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{7}{8}\) ÷ 3
= \(\frac{7}{8}\) × \(\frac{1}{3}\)
= \(\frac{ 7 × 1}{8 × 3}\)
= \(\frac{7}{24}\)
Hence, from the above,
We can conclude that the amount of sand in each container is: \(\frac{7}{24}\) cup.

Question 15.
DIG DEEPER!
You, your friend, and your cousin share \(\frac{1}{2}\) of a vegetable pizza and \(\frac{1}{4}\) of a cheese share pizza. The pizzas are the same size. What fraction of a pizza do you get in all?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 58

Divide. Use a model to help
Answer: The fraction of a pizza you got is: \(\frac{3}{12}\)

Explanation:
It is given that you, your friend, and your cousin share \(\frac{1}{2}\) of a vegetable pizza and \(\frac{1}{4}\) of a cheese share pizza.
So,
The total amount of pizza = \(\frac{1}{2}\) of a vegetable pizza + \(\frac{1}{4}\) of a cheese share pizza
In addition, we have to see either the numerators are equal or the denominators are equal.
If the numerators are equal we have to ake the denominators also equal.
So,
\(\frac{1}{2}\) is multplied by \(\frac{2}{2}\)
So,
\(\frac{1}{2}\) = \(\frac{2}{4}\)
So,
\(\frac{2}{4}\) + \(\frac{1}{4}\) = \(\frac{3}{4}\)
So,
The fraction of pizza each get = \(\frac{The total amount of pizza}{3}\)
= \(\frac{3}{4}\) ÷ 3
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{3}{4}\) ÷ 3
= \(\frac{3}{4}\) × \(\frac{1}{3}\)
= \(\frac{ 3 × 1}{4 × 3}\)
= \(\frac{3}{12}\)
Hence, from the above,
We can conclude that the fraction of pizza each get is: \(\frac{3}{12}\)

Divide Unit Fractions by Whole Numbers Homework & Practice 10.4

Question 1.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 59
Answer: \(\frac{1}{3}\) ÷ 4 = \(\frac{1}{12}\)

Explanation:
The given numbers are: \(\frac{1}{3}\) and 4
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{3}\) ÷ 4
= \(\frac{1}{3}\) × \(\frac{1}{4}\)
= \(\frac{ 1 × 1}{3 × 4}\)
= \(\frac{1}{12}\)
Hence,
\(\frac{1}{3}\) ÷ 4 = \(\frac{1}{12}\)

Question 2.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 60
Answer: \(\frac{1}{6}\) ÷ 3 = \(\frac{1}{18}\)

Explanation:
The given numbers are: \(\frac{1}{6}\) and 3
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{6}\) ÷ 3
= \(\frac{1}{6}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{6 × 3}\)
= \(\frac{1}{18}\)
Hence,
\(\frac{1}{6}\) ÷ 3 = \(\frac{1}{18}\)

Question 3.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 61
Answer: \(\frac{1}{4}\) ÷ 5 = \(\frac{1}{20}\)

Explanation:
The given numbers are: \(\frac{1}{4}\) and 5
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{4}\) ÷ 5
= \(\frac{1}{4}\) × \(\frac{1}{5}\)
= \(\frac{ 1 × 1}{5 × 4}\)
= \(\frac{1}{20}\)
Hence,
\(\frac{1}{4}\) ÷ 5 = \(\frac{1}{20}\)

Divide. Use a model to help.

Question 4.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 62
Answer: \(\frac{1}{5}\) ÷ 9 = \(\frac{1}{45}\)

Explanation:
The given numbers are: \(\frac{1}{5}\) and 9
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{5}\) ÷ 9
= \(\frac{1}{5}\) × \(\frac{1}{9}\)
= \(\frac{ 1 × 1}{5 × 9}\)
= \(\frac{1}{45}\)
Hence,
\(\frac{1}{5}\) ÷ 9 = \(\frac{1}{45}\)

Question 5.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 63
Answer: \(\frac{1}{8}\) ÷ 6 = \(\frac{1}{48}\)

Explanation:
The given numbers are: \(\frac{1}{8}\) and 6
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{8}\) ÷ 6
= \(\frac{1}{8}\) × \(\frac{1}{6}\)
= \(\frac{ 1 × 1}{8 × 6}\)
= \(\frac{1}{48}\)
Hence,
\(\frac{1}{8}\) ÷ 6 = \(\frac{1}{48}\)

Question 6.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 64
Answer: \(\frac{1}{7}\) ÷ 4 = \(\frac{1}{28}\)

Explanation:
The given numbers are: \(\frac{1}{7}\) and 4
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{7}\) ÷ 4
= \(\frac{1}{7}\) × \(\frac{1}{4}\)
= \(\frac{ 1 × 1}{7 × 4}\)
= \(\frac{1}{28}\)
Hence,
\(\frac{1}{7}\) ÷ 4 = \(\frac{1}{28}\)

Question 7.
YOU BE THE TEACHER
Your friend divides \(\frac{1}{3}\) by 7 to get \(\frac{1}{21}\). He checks his answer by multiplying \(\frac{1}{21}\) × \(\frac{1}{3}\). Does your friend check his answer correctly? Explain.
Answer: No, your friend does not check his answer correctly

Explanation:
It is given that your friend divides \(\frac{1}{3}\) by 7 to get \(\frac{1}{21}\).
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{3}\) ÷ 7
= \(\frac{1}{3}\) × \(\frac{1}{7}\)
= \(\frac{ 1 × 1}{7 × 3}\)
= \(\frac{1}{21}\)
It is also given that your friend checks his answer by multiplying \(\frac{1}{21}\) × \(\frac{1}{3}\).
Now,
\(\frac{1}{21}\) × \(\frac{1}{3}\)
= \(\frac{1 × 1}{21 × 3}\)
= \(\frac{1}{63}\)
But, your friend wanted to check whether \(\frac{1}{21}\) × \(\frac{1}{3}\) = \(\frac{1}{7}\)
But, the value becomes \(\frac{1}{63}\)
Hence, from the above,
We can conclude that your friend does not check the answer correctly.

Question 8.
Logic
Find the missing numbers.

Question 9.
Modeling Real Life
You win tickets that you can exchange for prizes. You exchange \(\frac{1}{5}\) of your tickets and then divide them equally among 3 prizes. What fraction of your tickets do you spend on each prize?
Answer: The fraction of your tickets you spend on each prize is: \(\frac{1}{15}\)

Explanation:
It is given that you win tickets that you can exchange for prizes.
It is also given that you exchange \(\frac{1}{5}\) of your tickets and then divide them equally among 3 prizes
So,
The fraction of the tickets spent on each prize = \(\frac{The value of Exchange}{The number of prizes}\)
= \(\frac{1}{5}\) ÷ 3
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{5}\) ÷ 3
= \(\frac{1}{5}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{5 × 3}\)
= \(\frac{1}{15}\)
Hence, from the above,
We can conlude that the fraction of tickets you spend on each prize is: \(\frac{1}{15}\)

Question 10.
DIG DEEPER!
You have \(\frac{1}{8}\) gallon of melted crayon wax. You pour the wax equally into 8 different molds to make new crayons. What fraction of a cup of melted wax is in each mold? Think: 1 gallon is 16 cups.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 66
Answer: The fraction of a cup of melted wax in each mold is: \(\frac{1}{4}\)

Explanation:
It is given that you have \(\frac{1}{8}\) gallon of melted crayon wax.
It is also given that you pour the wax equally into 8 different molds to make new crayons.
So,
The fraction of melted crayon wax in each mold in gallons = \(\frac{The total amount of melted crayon wax }{The number of molds}\)
= \(\frac{1}{8}\) ÷ 8
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{8}\) ÷ 8
= \(\frac{1}{8}\) × \(\frac{1}{8}\)
= \(\frac{ 1 × 1}{8 × 8}\)
= \(\frac{1}{64}\) gallons
But, it is given that
1 gallon = 16 cups
So,
The total number of cups that the melted crayon wax contained = \(\frac{1}{64}\) × \(\frac{16}{1}\)
= \(\frac{1 × 16 }{64 × 1}\)
= \(\frac{1}{4}\)
Hence, from the above,
We can conclude that there are \(\frac{1}{4}\) cups of melted crayon wax in each mold.

Review & Refresh

Question 11.
0.9 ÷ 0.1 = ___
Answer: 0.9 ÷ 0.1 = 9

Explanation:
The given decimal numbers are: 0.9 and 0.1
The representation of the decimal numbers in the fraction form is: \(\frac{9}{10}\) and \(\frac{1}{10}\)
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{9}{10}\) ÷ \(\frac{1}{10}\)  = \(\frac{9}{10}\) × \(\frac{10}{1}\)
= \(\frac{ 9 × 10}{10 × 1}\)
= 9
Hence, 0.9 ÷ 0.1 = 9

Question 12.
38.6 ÷ 100 = ___

Answer: 38.6 ÷ 100 = 0.386

Explanation:
The given numbers are: 38.6 and 100
The representation of the numbers in the fraction form is: \(\frac{386}{10}\) and \(\frac{100}{1}\)
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{386}{10}\) ÷ \(\frac{100}{1}\)  = \(\frac{386}{10}\) × \(\frac{1}{100}\)
= \(\frac{ 386 × 1}{100 × 10}\)
= \(\frac{386}{1000}\)
= 0.386
Hence, 38.6 ÷ 100 = 0.386

Question 13.
2.57 ÷ 0.01 = ___
Answer: 2.57 ÷ 0.01 = 257

Explanation:
The given decimal numbers are: 2.57 and 0.01
The representation of the decimal numbers in the fraction form is: \(\frac{257}{100}\) and \(\frac{1}{100}\)
Now,
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{257}{100}\) ÷ \(\frac{1}{100}\)  = \(\frac{257}{100}\) × \(\frac{100}{1}\)
= \(\frac{ 257 × 100}{100 × 1}\)
= 257
Hence, 2.57 ÷ 0.01 = 257

Lesson 10.5 Problem Solving: Fraction Division

Explore and Grow

You want to make a \(\frac{1}{3}\) batch of the recipe. How you can use division to find the amount of each ingredient you need?
Answer:
It is given that you want to make a \(\frac{1}{3}\) batch of the recipe.
So,
From \(\frac{1}{3}\),
1 represents a batch of the recipe
3 represents the total number of ingredients in a batch
So,
The amount of each ingredient you need = \(\frac{The amount of the batch of the recipe }{The total number of ingredients}\)
= \(\frac{1}{3}\) ÷ 3
Now,
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{3}\) ÷ 3
= \(\frac{1}{3}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{3 × 3}\)
= \(\frac{1}{9}\)
Hence, from the above,
We can conclude that the amount of each ingredient you need is: \(\frac{1}{9}\)

Reasoning
Without calculating, explain how you can tell whether you need more than or less than 1 tablespoon of olive oil?
Answer: You need less than 1 tablespoon of olive oil

Explanation:
From the above problem,
The amount of each ingredient is: \(\frac{1}{9}\)
Since the amount of each ingredient is less than 1, you need less than 1 tablespoon of olive oil

Think and Grow: Problem Solving: Fraction Division

Example
You have 4 cups of yellow paint and 3 cups of blue paint. How many batches of green paint can you make?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 67

Understand the Problem

What do you know?

  • You have 4 cups of yellow paint and 3 cups of blue paint.
  • One batch of green paint is made of \(\frac{1}{2}\) cup of yellow and \(\frac{1}{3}\) cup of blue.

What do you need to find?

  • You need to find how many batches of green paint you can make.

Make a Plan
How will you solve?

  • Find how many batches are possible from yellow, and how many from blue.
  • Choose the lesser number of batches.

Solve

So, you can make 8 batches of green paint.

Show and Grow

Question 1.
In the example, explain why you choose the fewer number of batches.
Answer: In the above example, the yellow paint has the less number of batches as the amount of each batch of yellow paint-filled is more than the batch of green paint
Hence,
We choose the fewer number of batches of yellow paint

Apply and Grow: Practice

Understand the problem. What do you know? What do you need to find? Explain.

Question 2.
A landowner donates 3 acres of land to a city. The mayor of the city uses 1 acre of the land for a playground and the rest of the land for community garden plots. Each garden plot is \(\frac{1}{3}\) acre. How many plots are there?
Understand the problem. Then make a plan. How will you solve it? Explain?
Answer: The number of plots in the community is: 6

Explanation:
It is given that a landowner donates 3 acres of land to a city and the mayor of the city uses 1 acre of the land for a playground and the rest of the land for community garden plots.
So,
The portion of the land used for community garden plots is: 2 acres
It is also given that each garden plot is \(\frac{1}{3}\) acre.
So,
The number of plots = \(\frac{The portion of the land used for community garden plots}{The area of each garden plot}\)
= 2 ÷ \(\frac{1}{3}\)
= 2 × \(\frac{3}{1}\)
= \(\frac{2}{1}\) × \(\frac{3}{1}\)
= 6
Hence, from the above,
We can conclude that there are 6 plots

Question 3.
A craftsman uses \(\frac{3}{4}\) gallon of paint to paint 4 identical dressers. He uses the same amount of paint on each dresser. How much paint does he use to paint 7 of the same dressers?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 69
Answer: The paint used by the craftsman to paint 7 of the same dressers is: \(\frac{21}{16}\)

Explanation:
It is given that a craftsman uses \(\frac{3}{4}\) gallon of paint to paint 4 identical dressers.
So,
The paint used to paint each dresser = \(\frac{3}{4}\) ÷ 4
= \(\frac{3}{4}\) × \(\frac{1}{4}\)
= \(\frac{3}{16}\) gallon
So,
The amount of paint used to paint the 7 identical dressers = \(\frac{The paint used to paint each dresser}{1}\) × 7
= \(\frac{3}{16}\) × \(\frac{7}{1}\)
= \(\frac{3 × 7}{16 × 1}\)
= \(\frac{21}{16}\) gallon
Hence, from the above,
We can conclude that the paint used to paint 7 identical dressers is: \(\frac{21}{16}\) gallon

Question 4.
An airplane travels 125 miles in \(\frac{1}{4}\) hour. It travels the same number of miles each hour. How many miles does the plane travel in 5 hours?
Answer: The number of miles the plane travel in 5 hours is: 2,500 miles

Explanation:
It is given that an airplane travels 125 miles in \(\frac{1}{4}\) hour
So,
The number of miles traveled by plane in 1 hour = 125 ÷ \(\frac{1}{4}\)
= 125 × \(\frac{4}{1}\)
= 125 × 4
= 500 miles
So,
The number of miles traveled by plane in 5 hours = ( The number of miles traveled by plane in 1 hour ) × 5
= 500 × 5
= 2,500 miles
Hence, from the above,
We can conclude that the number of miles traveled by plane in 5 hours is: 2,500 miles

Question 5.
You make bows for gifts using \(\frac{2}{3}\) yard of ribbon for each bow. You have 4 feet of red ribbon and 5 feet of green ribbon. How many bows can you make?
Answer: The number of bows you can make is: 2 bows

Explanation:
It is given that you make bows for gifts using \(\frac{2}{3}\) yard of ribbon for each bow.
It is also given that you have 4 feet of red ribbon and 5 feet of green ribbon
So,
The total length of ribbon = 5 + 4 = 9 feet
we know that,
1 foot = \(\frac{1}{3}\) yards
So,
9 feet = 9 × \(\frac{1}{3}\) yards
= \(\frac{9}{1}\) yards × \(\frac{1}{3}\) yards
= 3 yards
So,
The number of bows you can make = \(\frac{2}{3}\) yards × 3
= 2 bows
Hence, from the above,
We can conclude that the number of bows we can make is: 2

Question 6.
A landscaper buys 1 gallon of plant fertilizer. He uses \(\frac{1}{5}\) of the fertilizer, and then divides the rest into 3 smaller bottles. How many gallons does he put into each bottle?
Answer: The number of gallons he put into each bottle is: \(\frac{4}{15}\)

Explanation:
It is given that a landscaper buys 1 gallon of plant fertilizer and he uses \(\frac{1}{5}\) of the fertilizer
So,
The remaining amount of the fertilizer = 1 – \(\frac{1}{5}\)
= \(\frac{4}{5}\) gallons
It is also given that he divided the remaining amount of fertilizer into 3 smaller bottles.
So,
The amount of fertilizer put into each bottle = \(\frac{The remaining amount of the fertilizer}{The total number of bottles}\)
= \(\frac{4}{5}\) ÷ 3
= \(\frac{4}{5}\) × \(\frac{1}{3}\)
= \(\frac{4 × 1}{5 × 3}\)
= \(\frac{4}{15}\) gallons
hence, from the above,
We can conclude that the amount of remaining fertilizer put into each bottle is: \(\frac{4}{15}\) gallons

Think and Grow: Modeling Real Life

Example
A sponsor donates $0.10 to a charity for every \(\frac{1}{4}\) kilometer of the triathlon an athlete completes. The athlete completes the entire triathlon. How much money does the sponsor donate?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 70
Think: What do you know? What do you need to find? How will you solve?
Write and solve an equation.
Add 1.9, 90, and 21.1 to find how many kilometers the athlete completes.
Divide the sum by \(\frac{1}{4}\) to find how many \(\frac{1}{4}\) kilometers the athlete completes.
Multiply the quotient by $0.10 to find how much money the sponsor donates.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 71
Let m represent the total amount of money donated.

Show and Grow

Question 7.
You earn $5 for every \(\frac{1}{2}\) hour you do yard work. How much money do you earn in 1 week?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 73
Answer: The amount you earn in 1 week is: $700

Explanation:
The given table is:
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 73
From the above table,
The total amount of time = 5\(\frac{1}{2}\) + 3 + 1\(\frac{1}{2}\)
= \(\frac{11}{2}\) + 3 + \(\frac{3}{2}\)
= \(\frac{11 + 3}{2}\) + 3
= 7 + 3
= 10 hours
It is given that you earn $5 for every \(\frac{1}{2}\) hour you do yard work
So,
The amount earned in 10 hours in a day = 10 ÷\(\frac{1}{2}\) × 5 ( Since we have the time in hours but the money earned is given in half an hour basis )
= 20 × 5
= $100
We know that 1 week = 7 days
So,
The amount earned in 1 week = 100 × 7 = $700
hence, from the above,
We can conclude that we can earn $700 in a week

Problem Solving: Fraction Division Homework &  10.5

Understand the problem. Then make a plan. How will you solve? Explain.

Question 1.
A train travels 75 miles in \(\frac{1}{2}\) hour. How many miles does the train travel in 8 hours?
Answer: The number of miles the train travel in  hours is: 1,200 miles

Explanation:
It is given that a train travels 75 miles in \(\frac{1}{2}\) hour.
So,
The number of miles the train travel in 1 hour = 75 ÷ \(\frac{1}{2}\)
= 75 × 2
= 150 miles
So,
The number of miles the train travel in 8 hours = The number of miles traveled by train in 1 hour × 8
= 150 × 8
= 1,200 miles
Hence, from the above,
We can conclude that the train travels 1,200 miles in 8 hours.

Question 2.
You need \(\frac{2}{3}\) yard of fabric to create a headband. You have 12 feet of blue fabric and 4 feet of yellow fabric. How many headbands can you make with all of the fabric?
Answer: The number of headbands you can make with all of the fabric is: 8 headbands

Explanation:
It is given that you need \(\frac{2}{3}\) yard of fabric to create a headband.
It is also given that you have 12 feet of blue fabric and 4 feet of yellow fabric.
So,
The total length of the fabric = 12 + 4 = 16 feet
We know that
1 foot = \(\frac{1}{3}\) yards
So,
16 feet = \(\frac{16}{3}\) yards
So,
The number of headbands you can create with all the fabric = \(\frac{The total length of the fabric}{The length of each fabric}\)
= \(\frac{16}{3}\) ÷ \(\frac{2}{3}\)
= \(\frac{16}{3}\) × \(\frac{3}{2}\)
= \(\frac{16 × 3}{3 × 2}\)
= 8 headbands
Hence, from the above,
We can conclude that we can create 8 headbands with all the fabric.

Question 3.
An art teacher has 8 gallons of paint. Her class uses \(\frac{3}{4}\) of the paint. The teacher divides the rest of the paint into 4 bottles. How much paint is in each bottle?
Answer: The amount of paint in each bottle is: \(\frac{1}{2}\)

Explanation:
It is given that an art teacher has 8 gallons of paint and her class uses \(\frac{3}{4}\) of the paint.
So,
The remaining amount of paint = \(\frac{1}{4}\) × 8
= \(\frac{1}{4}\) × \(\frac{8}{1}\)
=\(\frac{1 × 8}{4 × 1}\)
= 2 gallons
It is also given that the remaining amount of the paint divided into 4 bottles by the teacher
So,
The amount of paint present in each bottle = 2 ÷ 4
= \(\frac{1}{2}\) gallons
Hence, from the above,
We can conclude that the amout of paint present in each bottle is: \(\frac{1}{2}\) gallons

Question 4.
You mix 3\(\frac{1}{4}\) cups of frozen strawberries and 4\(\frac{1}{2}\) cups of frozen blueberries in a bowl. A smoothie requires \(\frac{1}{2}\) cup of your berry mix. How many smoothies can you make?
Answer: The number of smoothies you can make is:

Explanation:
It is given that you mix 3\(\frac{1}{4}\) cups of frozen strawberries and 4\(\frac{1}{2}\) cups of frozen blueberries in a bowl.
So,
The amount of berry mix = 3\(\frac{1}{4}\) cups of frozen strawberries + 4\(\frac{1}{2}\) cups of frozen blueberries
= 3\(\frac{1}{4}\) + 4\(\frac{1}{2}\)
= \(\frac{13}{4}\) + \(\frac{9}{2}\)
In addition, equate the denominators
So,
Multiply \(\frac{9}{2}\) with \(\frac{2}{2}\)
So,
\(\frac{9}{2}\) = \(\frac{18}{4}\)
So,
The amount of berry mix = \(\frac{13}{4}\) + \(\frac{18}{4}\)
= \(\frac{31}{4}\)
Now,
It is also given that the smoothie requires \(\frac{1}{2}\) cup of your berry mix.
So,
The number of smoothies = \(\frac{31}{4}\) ÷ \(\frac{1}{2}\)
= \(\frac{31}{4}\) × \(\frac{2}{1}\)
= \(\frac{31 × 2}{4 × 1}\)
= \(\frac{31}{2}\)
Hence, from the above,
We can conclude that the number of smoothies we can make are: \(\frac{31}{2}\)

Question 5.
Modeling Real Life
A sponsor donates $0.10 for every \(\frac{1}{4}\) dollar donated at the locations shown. How much money does the sponsor donate?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 74
Answer: The amount of money the sponsor donates is: $40.4

Explanation:
The given table is:
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 74
From the above table,
The total amount of money collected = 25.25 + 12.50 + 63.25
= $101
It is given that a sponsor donates $0.10 for every \(\frac{1}{4}\) dollar
So,
the total amount of donated = The total amount of money collected ÷ \(\frac{1}{4}\) × 0.10
= 101 ÷ \(\frac{1}{4}\) × 0.10
= 101 × 4 × 0.10
= 04 × 0.10
= $40.4
Hence, from the above,
We can conclude that the amount of money donated by a sponsor is: $40.4

Question 6.
DIG DEEPER!
A nurse earns $16 for every \(\frac{1}{2}\) hour at work. How much money does she earn in 5 days?
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 75
Answer: The money she earns in 5 days is: $1,280

Explanation:
The given table is:
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 75
From the above table,
The total amount of time = 6\(\frac{3}{4}\) + 1 + \(\frac{1}{4}\)
= \(\frac{27}{4}\) + 1 + \(\frac{1}{4}\)
= \(\frac{27 + 1}{4}\) + 1
= 7 + 1
= 8 hours
It is given that a nurse earns $16 for every \(\frac{1}{2}\) hour at work.
So,
The money she earned for 1 hour = 16 ÷ \(\frac{1}{2}\)
= 16 × 2 = $32
So,
The money earned for 8 hours = The money earned in 1 hour × 8
= 32 × 8 = $256
So,
The money earned in 5 days = The money earned in 1 day × 5
= 256 × 5 = $1,280
hence, from the above,
we can conclude that she can earn $1,280 in 5 days.

Review & Refresh

Find the quotient. Then check your answer.

Question 7.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 76
Answer:  186 ÷ 12 = 1 R 4

Explanation:
Let 185.88 be rounded to 186
So,
By using the partial quotients method,
186 ÷ 12 = ( 120 + 36 + 24 ) ÷ 12
= ( 120 ÷ 12 ) + ( 36 ÷ 12 ) + ( 24 ÷ 12 )
= 10 + 3 + 2
= 17 R 4
Hence, 186 ÷ 12 = 17 R 4

Question 8.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 77
Answer: 74 ÷ 24 = 3 R 2

Explanation:
Let 74.4 be rounded to 74
So,
By using the partial quotients method,
74 ÷ 24 = 72 ÷ 24
= 3 R 2
Hence, 74 ÷ 24 = 3 R 2

Question 9.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 78
Answer: 42 ÷ 46 = 0.9

Explanation:
Let 42.32 be rounded to 42
So,
By using the partial quotients method,
42 ÷ 46 = 0.9
Hence,
42 ÷ 46 = 0.9

Divide Fractions Performance Task 10

Your city has a robotics competition. Each team makes a robot that travels through a maze. The time each robot spends in the maze is used to find the team’s score.
1. One-third of the students in your grade participate in the competition. The number of participating students is divided into 12 teams.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 79
a. What fraction of the total number of students in your grade is on each team?
Answer: The fraction of the total number of students in your grade is: \(\frac{1}{36}\)

Explanation:
It is given that there are \(\frac{1}{3}\) of the students in your grade are participating in the competition.
It is also given that the participating students are divided into 12 teams.
So,
The fraction of the total number of students in each team = \(\frac{The number of participating students}{Th total number of teams}\)
= \(\frac{1}{3}\) ÷ 12
= \(\frac{1}{3}\) ÷ \(\frac{12}{1}\)
= \(\frac{1}{3}\) × \(\frac{1}{12}\)
= \(\frac{1 × 1}{12 × 3}\)
= \(\frac{1}{36}\)
Hence, from the above,
We can conclude that the fraction of students that are in each team is: \(\frac{1}{36}\)

b. There are 3 students on each team. How many students are in your grade?
Answer: The number of students in your grade is: 36

Explanation:
It is given that the number of students is divided into 12 teams
It is also given that there are 3 students on each team
So,
The total number of students = The number of teams × The number of students in each team
= 12 × 3 = 36 students
Hence, from the above,
We can conclude that there are 36 students in your grade

Question 2.
The maze for the competition is shown.
a. Write the length of the maze in feet.
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 80
Answer:
The given maze for the competition is:
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 80
From the above maze,
The total length of the maze is: 8 feet 6 inches
We know that,
1 foot = 12 inches
Hence,
1 inch = \(\frac{1}{12}\) feet
So,
6 inches = 6 × \(\frac{1}{12}\)
= \(\frac{1}{12}\) × \(\frac{6}{1}\)
= \(\frac{1}{2}\) feet
So,
The total length of the maze in feet = 8 feet + \(\frac{1}{2}\) feet
= 8.5 feet or 8\(\frac{1}{2}\) feet

b. The length of the maze is divided into 6 equal sections. What is the length of each section of the maze?
Answer: The length of each section of the maze is: \(\frac{17}{12}\) feet

Explanation:
From the above Exercise,
The total length of the maze in feet is: 8.5 feet or 8\(\frac{1}{2}\) feet
It is given that the length of the maze is divided into 6 equal sections
So,
The length of each section of the maze = 8\(\frac{1}{2}\) ÷ 6
= 8\(\frac{1}{2}\) ÷ \(\frac{6}{1}\)
= 8\(\frac{1}{2}\) × \(\frac{1}{6}\)
= \(\frac{17}{2}\) × \(\frac{1}{6}\)
= \(\frac{17}{12}\) feet
Hence, from the above,
We can conclude that the length of each section in a maze is: \(\frac{17}{12}\) feet

Question 3.
Each team has 200 seconds to complete the maze. The rules require judges to use the expression (200 – x) ÷ \(\frac{1}{5}\), where x is the total number of seconds, to find a team’s total score.
a. Your robot completes the maze in 3 minutes 5 seconds. How many points does your team earn?
Answer: The number of points your team earn is: 75 points

Explanation:
It is given that each team has 200 seconds to complete the maze and the rules require judges to use the expression (200 – x) ÷ \(\frac{1}{5}\) where x is the total number of seconds
It is also given that your robot completes the maze in 3 minutes 5 seconds
We know that,
1 minute = 60 seconds
So,
The time taken by the robot to complete the maze in seconds = ( 3 × 60 ) + 5
= 185 seconds
So,
x= 185
So,
200 – x = 200 – 185 = 15
So,
The number of points the team earned = ( 200 – x ) ÷ \(\frac{1}{5}\)
= 15 ÷ \(\frac{1}{5}\)
= 15 × 5
= 75 points
Hence, from the above,
We can conclude that the number of points earned by the team is: 75 points

b. Do you think the team with the most points or the fewest points wins? Use an example to justify your answer.
Answer: The team with the most points wins the competition because
Reason:
Suppose team A takes 2 minutes and team B takes 3 minutes to complete the competition
So,
The time is taken by team A in seconds = 120 seconds
So,
x= 120
So,
200 – x = 200 – 120 = 80
Now,
The time is taken by team B in seconds = 180 seconds
So,
x= 180
So,
200 – x = 200 – 180 = 20
Now,
The number of points earned by team A = 80 ÷ \(\frac{1}{5}\)
= 400 points
The number of points earned by team B = 20 ÷ \(\frac{1}{5}\)
= 100 points
Hence, from the above,
We can conclude that the team with more points wins the competition

Divide Fractions Activity

Fraction Connection: Division

Directions:

  1. Players take turns rolling three dice.
  2. On your turn, evaluate the expression indicated by your roll and cover the answer.
  3. The first player to get four in a row, horizontally, vertically, or diagonally, wins!

Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 81
Big Ideas Math Answers 5th Grade Chapter 10 Divide Fractions 82

Divide Fractions Chapter Practice 10

10.1 Interpret Fractions as Division

Divide. Use a model to help.

Question 1.
1 ÷ 2 = ___
Answer: 1 ÷ 2 = \(\frac{1}{2}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
Hence,
1 ÷ 2 = \(\frac{1}{2}\)

Question 2.
3 ÷ 10 = __
Answer: 3 ÷ 10 = \(\frac{3}{10}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
Hence,
3 ÷ 10 = \(\frac{3}{10}\)

Question 3.
4 ÷ 7 = __
Answer: 4 ÷ 7 = \(\frac{4}{7}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
Hence,
4 ÷ 7 = \(\frac{4}{7}\)

Question 4.
11 ÷ 15 = ___
Answer: 11 ÷ 15 = \(\frac{11}{15}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
Hence,
11 ÷ 15 = \(\frac{11}{15}\)

Question 5.
8 ÷ 9 = ___
Answer: 8 ÷ 9 = \(\frac{8}{9}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
Hence,
8 ÷ 9 = \(\frac{8}{9}\)

Question 6.
13 ÷ 20 = ___
Answer: 13 ÷ 20 = \(\frac{13}{20}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
Hence,
13 ÷ 20 = \(\frac{13}{20}\)

Question 7.
Modeling Real Life
Nine friends equally share 12 apples. What fraction of an apple does each friend get?
Answer: The fraction of an apple each friend get is: \(\frac{9}{12}\)

Explanation:
It is given that nine friends equally share 12 apples.
So,
The fraction of an apple each friend get = \(\frac{The number of friends}{The number of apples}\)
= \(\frac{9}{12}\)
Hence, from the above,
We can conclude that the fraction of an apple each friend get is: \(\frac{9}{12}\)

10.2 Mixed Numbers as Quotients

Divide. Use a model to help

Question 8.
8 ÷ 3 = ___

Answer: 8 ÷ 3 = 2\(\frac{2}{3}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
a\(\frac{b}{c}\) = \(\frac{ac + b}{c}\)
\(\frac{a}{b}\) = Remainder\(\frac{Quotient}{Divisor}\)
So,
8 ÷ 3 = \(\frac{8}{3}\)
By using the partial quotients method,
8 ÷ 3 = 6 ÷ 3
= 2 R 2
Hence,
8 ÷ 3 = 2\(\frac{2}{3}\)

Question 9.
6 ÷ 5 = ___
Answer: 6 ÷ 5 = 1\(\frac{1}{5}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
a\(\frac{b}{c}\) = \(\frac{ac + b}{c}\)
\(\frac{a}{b}\) = Remainder\(\frac{Quotient}{Divisor}\)
So,
6 ÷ 5 = \(\frac{6}{5}\)
By using the partial quotients method,
6 ÷ 5 = 5 ÷ 5
= 1 R 1
Hence,
6 ÷ 5 = 1\(\frac{1}{5}\)

Question 10.

10 ÷ 4 = ___
Answer: 10 ÷ 4 = 2\(\frac{2}{4}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
a\(\frac{b}{c}\) = \(\frac{ac + b}{c}\)
\(\frac{a}{b}\) = Remainder\(\frac{Quotient}{Divisor}\)
So,
10 ÷ 4 = \(\frac{10}{4}\)
By using the partial quotients method,
10 ÷ 4 = 8 ÷ 4
= 2 R 2
Hence,
10 ÷ 4 = 2\(\frac{2}{4}\)

Question 11.

20 ÷ 11 = __
Answer: 20 ÷ 11 = 1\(\frac{9}{11}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
a\(\frac{b}{c}\) = \(\frac{ac + b}{c}\)
\(\frac{a}{b}\) = Remainder\(\frac{Quotient}{Divisor}\)
So,
20 ÷ 11 = \(\frac{20}{11}\)
By using the partial quotients method,
20 ÷ 11 = 11 ÷ 11
= 1 R 9
Hence,
20 ÷ 11 = 1\(\frac{9}{11}\)

Question 12.

25 ÷ 2 = ___
Answer: 25 ÷ 2 = 12\(\frac{1}{2}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
a\(\frac{b}{c}\) = \(\frac{ac + b}{c}\)
\(\frac{a}{b}\) = Remainder\(\frac{Quotient}{Divisor}\)
So,
25 ÷ 2 = \(\frac{25}{2}\)
By using the partial quotients method,
25 ÷ 2 = 24 ÷ 2
= 12 R 1
Hence,
25 ÷ 2 = 12\(\frac{1}{2}\)

Question 13.

64 ÷ 9 = ___
Answer: 64 ÷ 9 = 7\(\frac{1}{9}\)

Explanation:
We know that,
a ÷ b = \(\frac{a}{b}\)
a\(\frac{b}{c}\) = \(\frac{ac + b}{c}\)
\(\frac{a}{b}\) = Remainder\(\frac{Quotient}{Divisor}\)
So,
64 ÷ 9 = \(\frac{64}{9}\)
By using the partial quotients method,
64 ÷ 9 = 63 ÷ 9
= 7 R 1
Hence,
64 ÷ 9 = 7\(\frac{1}{9}\)

10.3 Divide Whole Numbers by Unit Fractions

Divide. Use a model to help.

Question 14.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 83
Answer: 4 ÷ \(\frac{1}{2}\) = 8

Explanation:
The given numbers are: 4 and \(\frac{1}{2}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
4 ÷ \(\frac{1}{2}\)  = 4 × \(\frac{2}{1}\)
= \(\frac{4}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 2 × 4}{1 × 1}\)
= 8
Hence,
4÷ \(\frac{1}{2}\) = 8

Question 15.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 84
Answer: 6 ÷ \(\frac{1}{5}\) = 30

Explanation:
The given numbers are: 6 and \(\frac{1}{5}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
6 ÷ \(\frac{1}{5}\)  = 6 × \(\frac{5}{1}\)
= \(\frac{6}{1}\) × \(\frac{5}{1}\)
= \(\frac{ 6 × 5}{1 × 1}\)
= 30
Hence,
6÷ \(\frac{1}{5}\) = 30

Question 16.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 85
Answer: 7 ÷ \(\frac{1}{4}\) = 28

Explanation:
The given numbers are: 7 and \(\frac{1}{4}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
7 ÷ \(\frac{1}{4}\)  = 7 × \(\frac{4}{1}\)
= \(\frac{7}{1}\) × \(\frac{4}{1}\)
= \(\frac{ 7 × 4}{1 × 1}\)
= 28
Hence,
7÷ \(\frac{1}{4}\) = 36

Question 17.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 86
Answer: 8 ÷ \(\frac{1}{3}\) = 24

Explanation:
The given numbers are: 8 and \(\frac{1}{3}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
8 ÷ \(\frac{1}{3}\)  = 8 × \(\frac{3}{1}\)
= \(\frac{8}{1}\) × \(\frac{3}{1}\)
= \(\frac{ 8 × 3}{1 × 1}\)
= 24
Hence,
8÷ \(\frac{1}{3}\) = 24

Question 18.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 87
Answer: 9 ÷ \(\frac{1}{2}\) = 18

Explanation:
The given numbers are: 9 and \(\frac{1}{2}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
9 ÷ \(\frac{1}{2}\)  = 9 × \(\frac{2}{1}\)
= \(\frac{9}{1}\) × \(\frac{2}{1}\)
= \(\frac{ 9 × 2}{1 × 1}\)
= 18
Hence,
9÷ \(\frac{1}{2}\) = 18

Question 19.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 88
Answer: 2 ÷ \(\frac{1}{10}\) = 20

Explanation:
The given numbers are: 2 and \(\frac{1}{10}\)
We know that,
a ÷ \(\frac{a}{b}\) = a × \(\frac{b}{a}\)
a= \(\frac{a}{1}\)
So,
2 ÷ \(\frac{1}{10}\)  = 2 × \(\frac{10}{1}\)
= \(\frac{2}{1}\) × \(\frac{10}{1}\)
= \(\frac{ 2 × 10}{1 × 1}\)
= 20
Hence,
2÷ \(\frac{1}{10}\) = 20

10.4 Divide Unit Fractions by Whole Numbers

Divide. Use a model to help.

Question 20.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 89
Answer: \(\frac{1}{7}\) ÷ 2 = \(\frac{1}{14}\)

Explanation:
The given numbers are: \(\frac{1}{7}\) and 2
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{7}\) ÷ 2
= \(\frac{1}{7}\) × \(\frac{1}{2}\)
= \(\frac{ 1 × 1}{7 × 2}\)
= \(\frac{1}{14}\)
Hence,
\(\frac{1}{7}\) ÷ 2 = \(\frac{1}{14}\)

Question 21.
Big Ideas Math Answers Grade 5 Chapter 10 Divide Fractions 90
Answer: \(\frac{1}{2}\) ÷ 9 = \(\frac{1}{18}\)

Explanation:
The given numbers are: \(\frac{1}{2}\) and 9
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{2}\) ÷ 9
= \(\frac{1}{2}\) × \(\frac{1}{9}\)
= \(\frac{ 1 × 1}{2 × 9}\)
= \(\frac{1}{18}\)
Hence,
\(\frac{1}{2}\) ÷ 9 = \(\frac{1}{18}\)

Question 22.
Big Ideas Math Solutions Grade 5 Chapter 10 Divide Fractions 91
Answer: \(\frac{1}{3}\) ÷ 7 = \(\frac{1}{21}\)

Explanation:
The given numbers are: \(\frac{1}{3}\) and 7
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{3}\) ÷ 7
= \(\frac{1}{3}\) × \(\frac{1}{7}\)
= \(\frac{ 1 × 1}{7 × 3}\)
= \(\frac{1}{21}\)
Hence,
\(\frac{1}{3}\) ÷ 7 = \(\frac{1}{21}\)

Question 23.
Big Ideas Math Solutions Grade 5 Chapter 10 Divide Fractions 92
Answer: \(\frac{1}{6}\) ÷ 5 = \(\frac{1}{30}\)

Explanation:
The given numbers are: \(\frac{1}{6}\) and 5
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{6}\) ÷ 5
= \(\frac{1}{6}\) × \(\frac{1}{5}\)
= \(\frac{ 1 × 1}{6 × 5}\)
= \(\frac{1}{30}\)
Hence,
\(\frac{1}{6}\) ÷ 5 = \(\frac{1}{30}\)

Question 24.
Big Ideas Math Solutions Grade 5 Chapter 10 Divide Fractions 93
Answer: \(\frac{1}{7}\) ÷ 3 = \(\frac{1}{21}\)

Explanation:
The given numbers are: \(\frac{1}{7}\) and 3
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{7}\) ÷ 3
= \(\frac{1}{7}\) × \(\frac{1}{3}\)
= \(\frac{ 1 × 1}{7 × 3}\)
= \(\frac{1}{21}\)
Hence,
\(\frac{1}{7}\) ÷ 3 = \(\frac{1}{21}\)

Question 25.
Big Ideas Math Solutions Grade 5 Chapter 10 Divide Fractions 94

Answer: \(\frac{1}{8}\) ÷ 4 = \(\frac{1}{32}\)

Explanation:
The given numbers are: \(\frac{1}{8}\) and 4
We know that,
\(\frac{a}{b}\) ÷ a  = \(\frac{a}{b}\) × \(\frac{1}{a}\)
a= \(\frac{a}{1}\)
So,
\(\frac{1}{8}\) ÷ 4
= \(\frac{1}{8}\) × \(\frac{1}{4}\)
= \(\frac{ 1 × 1}{8 × 4}\)
= \(\frac{1}{32}\)
Hence,
\(\frac{1}{8}\) ÷ 4 = \(\frac{1}{32}\)

10.5 Problem Solving: Fraction Division

Question 26.
A mechanic buys 1 gallon of oil. She uses \(\frac{1}{6}\) of the oil, and then divides the rest into 4 smaller bottles. How much does she put into each bottle?
Big Ideas Math Solutions Grade 5 Chapter 10 Divide Fractions 95
Answer: The amount of oil she put into each bottle is: \(\frac{5}{24}\)

Explanation:
It is given that a mechanic buys 1 gallon of oil and she uses \(\frac{1}{6}\) of the oil
So,
the remaining part of the oil = 1 –  \(\frac{1}{6}\)
= \(\frac{5}{6}\)
It is also given that she divides the rest of the oil into 4 smaller bottles.
So,
The amount of oil in each bottle = \(\frac{The remaining part of the oil}{The number of bottles}\)
= \(\frac{5}{6}\) ÷ 4
= \(\frac{5}{6}\) × \(\frac{1}{4}\)
= \(\frac{5 × 1}{6 × 4}\)
= \(\frac{5}{24}\)
Hence, from the above,
We can conclude that the amount of oil in each bottle is: \(\frac{5}{24}\)

Conclusion:

Make use of the quick links and try to solve the problems in a simple manner. Redefine your true self with the BIM Answer Key for Grade 5 curated by subject experts. Test your knowledge by solving the questions which are given at the end of the chapter.

Big Ideas Math Answers Grade 5 Chapter 14 Classify Two-Dimensional Shapes

Big Ideas Math Answers Grade 5 Chapter 14 Classify Two-Dimensional Shapes

Big Ideas Math Answers Grade 5 Chapter 14 Classify Two-Dimensional Shapes pdf is available here. So, the students who are in search of Big Ideas Math Book 5th Grade Answer Key Chapter 14 Classify Two-Dimensional Shapes can get them on this page. Go through the Big Ideas Math Answers Grade 5 Chapter 14 Classify Two-Dimensional Shapes and improve your performance skills. Test your skills by solving the Performance Task, Activity, Chapter Practice which is provided at the end of the chapter.

Big Ideas Math Book 5th Grade Answer Key Chapter 14 Classify Two-Dimensional Shapes

Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes are very easy to understand. You can quickly grasp the mathematical practices with the help of Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes. The topics covered in this chapter are Classify Triangles, Quadrilaterals, Relate Quadrilaterals. Just hit the below-provided links and Download Big Ideas Math Book 5th Grade Answer Key Chapter 14 Classify Two-Dimensional Shapes.

Lesson: 1 Classify Triangles

Lesson: 1 Classify Triangles

Lesson: 2 Classify Quadrilaterals

Lesson: 2 Classify Quadrilaterals

Lesson: 3 Relate Quadrilaterals

Classify Two-Dimensional Shapes

Classify Two-Dimensional Shapes

Lesson 14.1 Classify Triangles

Explore and Grow

Draw and label a triangle for each description. If a triangle cannot be drawn, explain why.
Big Ideas Math Answers Grade 5 Chapter 14 Classify Two-Dimensional Shapes 1

Precision
Draw a triangle that meets two of the descriptions above.

Answer:
Big-Ideas-Math-Answers-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-1

Think and Grow: Classify Triangles

Key Idea
Triangles can be classified by their sides.

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 2
An equilateral triangle has three sides with the same length.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 3
An isosceles triangle has two sides with the same length.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 4
A scalene triangle has no sides with the same length.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 5

Key Idea
Triangles can be classified by their angles.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 6
An acute triangle has three acute angles.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 7
An obtuse triangle has one obtuse angle.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 8
A right triangle has one right angle.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 9
An equiangular triangle has three angles with the same measure.
Example
Classify the triangle by its angles and its sides.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 10
The triangle has one ___ angle
and ___ sides with the same length.
So, it is a ___ triangle.

Answer:
The triangle has one right angle
and no sides with the same length.
So, it is a right triangle.

Show and Grow

Classify the triangle by its angles and its sides

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 11

Answer:  Equilateral triangle.

Explanation: An equilateral triangle has three sides of the same length.

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 12

Answer: Isosceles triangle

Explanation: An Isosceles triangle has two sides of the same size. Two of its angle also measure equal.

Question 3.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 13

Answer:  Scalene triangle.

Explanation: A Scalene triangle has no sides are congruent (same size)

Apply and Grow: Practice

Classify the triangle by its angles and its sides.

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 14

Answer:  Right triangle.

Explanation: In a triangle one of the angle is a right angle (90 Deg ) called as Right triangle.

Question 5.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 15

Answer: Isosceles triangle.

Explanation: An Isosceles triangle has two sides of the same size. Two of its angle also measure equal.

Question 6.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 16

Answer: Equiangular triangle

Explanation: In an equilateral triangle, all the lengths of the sides are equal. In such a case, each of the interior angles will have a measure of 60 degrees. Since the angles of an equilateral triangle are the same, it is also known as an equiangular triangle. The figure given below illustrates an equilateral triangle.

Question 7.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 17

Answer:  Isosceles triangle.

Explanation: An Isosceles triangle has two sides of the same length. Two of its angle also measure equal.

Question 8.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 18

Answer:  Scalene triangle.

Explanation: A Scalene triangle has no sides are congruent (Same size) and angles also all different.

Question 9.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 19

Answer:  Right triangle.

Explanation: In a triangle one of the angle is a right angle (90 deg ) called a Right triangle.

Question 10.
A triangular sign has a 40° angle, a 55° angle, and an 85° angle. None of its sides have the same length. Classify the triangle by its angles and its sides.

Answer:  Scalene triangle.

Explanation: A Scalene triangle has no sides that are congruent (Same size) and angles also all different.

Question 11.
YOU BE THE TEACHER
Your friend says the triangle is an acute triangle because it has two acute angles. Is your friend correct? Explain.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 20

Answer:  Above is no acute triangle and it is called a scalene triangle.

Explanation: A Scalene triangle has only no sides that are congruent (Same size) and angles also all different. So it is called a scalene triangle.

Question 12.
DIG DEEPER!
Draw one triangle for each category. Which is the appropriate category for an equiangular triangle? Explain your reasoning.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 21

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-21
From the figure, we can say that acute triangles have the same length. So, the first triangle is the equiangular triangle.

Think and Grow: Modeling Real Life

Example
A bridge contains several identical triangles. Classify each triangle by its angles and its sides. What is the length of the bridge?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 22
Each triangle has ___ angles with the same measure and ___ sides with the same length.
So, each triangle is ___ and ___.
The side lengths of 6 identical triangles meet to form the length of the bridge. So, multiply the side length by 6 to find the length of the bridge.
27 × 6 = ___
So, the bridge is ___ long.

Answer:
Each triangle has 3 angles with the same measure and 3 sides with the same length.
The side lengths of 6 identical triangles meet to form the length of the bridge. So, multiply the side length by 6 to find the length of the bridge.
27 × 6 = 162
So, the bridge is 162 ft long.

Show and Grow

Question 13.
The window is made using identical triangular panes of glass. Classify each triangle by its angles and its sides. What is the height of the window?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 23

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-23
The length of the two sides of the triangle is the same.
18 in + 18 in = 36 inches
Thus the height of the window is 36 inches

Question 14.
DIG DEEPER!
You connect four triangular pieces of fabric to make the kite. Classify the triangles by their angles and their sides. Use a ruler and a protractor to verify your answer.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 24

Answer:
The name of the blue triangle is isosceles right angle triangle.
The two sides of the triangle are the same.
The name of the red triangle is isosceles right-angle triangle.
The two sides of the triangle are the same.
The name of the green triangle is isosceles right angle triangle.
The two sides of the triangle are the same.
The name of the yellow triangle is isosceles right angle triangle.
The two sides of the triangle are the same.

Classify Triangles Homework & Practice 14.1

Classify the triangle by its angles and its sides.

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 25

Answer:  Scalene triangle.

Explanation: A Scalene triangle has only no sides that are congruent (Same size) and angles also all different. So it is called a scalene triangle

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 26

Answer: Isosceles triangle.

Explanation: An Isosceles triangle has two sides of the same size. Two of its angle also measure equal.

Question 3.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 27

Answer: Scalene triangle.

Explanation: A Scalene triangle has no sides that are congruent (Same size) and angles also all different.

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 28

Answer: Isosceles triangle.

Explanation: An Isosceles triangle has two sides of the same length. Two of its angle also measure equal.

Question 5.

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 29

Answer:  Scalene triangle.

Explanation: A Scalene triangle has no sides that are congruent (Same size) and angles also all different.

Question 6.

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 30

Answer:  Equiangular triangle.

Explanation:
In an equilateral triangle, all the lengths of the sides are equal. In such a case, each of the interior angles will have a measure of 60 degrees. Since the angles of an equilateral triangle are the same, it is also known as an equiangular triangle. The figure given below illustrates an equilateral triangle.

Question 7.
A triangular race flag has two 65° angles and a 50° angle. Two of its sides have the same length. Classify the triangle by its angles and its sides.

Answer: Isosceles triangle.

Explanation:  An Isosceles triangle has two sides of the same size. Two of its angle also measure equal.

Question 8.
A triangular measuring tool has a 90° angle and no sides of the same length. Classify the triangle by its angles and its sides.

Answer: Right triangle.

Explanation: In a triangle one of the angle is a right angle (90 Deg ) called a Right triangle.

Question 9.

Structure

Draw a triangle with vertices A(2, 2), B(2, 6), and C(6, 2) in the coordinate plane. Classify the triangle by its angles and its sides. Explain your reasoning.

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 31

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-31

Question 10.

YOU BE THE TEACHER

Your friend says that both Newton and Descartes are correct. Is your friend correct? Explain.

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 32

Answer: Yes

Explanation:  An acute triangle is a triangle in which each angle is an acute angle. Any triangle which is not acute is either a right triangle or an obtuse triangle. All acute triangle angles are less than 90 degrees. For example, an equilateral triangle is always acute, since all angles (which are 60) are all less than 90.

Question 11.
DIG DEEPER!
The sum of all the angle measures in a triangle is 180°. A triangle has a 34° angle and a 26° angle. Is the triangle acute, right, or obtuse? Explain.

Answer: Scalene triangle.

Explanation: A Scalene triangle has no sides that are congruent (Same size) and angles also all different.

Question 12.
Modeling Real Life
A designer creates the logo using identical triangles. Classify each triangle by its angles and its sides. What is the perimeter of the logo?

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 33

Answer: Equiangular triangle

Explanation: In an equilateral triangle, all the lengths of the sides are equal. In such a case, each of the interior angles will have a measure of 60 degrees. Since the angles of an equilateral triangle are the same, it is also known as an equiangular triangle. The figure given below illustrates an equilateral triangle.

Question 13.
DIG DEEPER!
The window is made using identical triangular panes of glass. Classify each triangle by its angles and its sides. What are the perimeter and the area of the window? Explain your reasoning.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 34

Answer: Right triangle.

Explanation: A right triangle is a triangle in which one of the angles is 90 degrees. In a right triangle, the side opposite to the right angle (90-degree angle) will be the longest side and is called the hypotenuse. You may come across triangle types with combined names like right isosceles triangle and such, but this only implies that the triangle has two equal sides with one of the interior angles being 90 degrees. The figure given below illustrates a right triangle

Review & Refresh

Question 14.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 35

Answer : \(\frac{1}{4}\) =0.25

Explanation: 2 divides by 8  with 1/4 times, So the answer is 1/4.

Question 15.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 36

Answer : \(\frac{15}{4}\) = 3.75

Explanation: 15 divides by 4 with \(\frac{15}{4}\) times, So the answer is \(\frac{15}{4}\) or 3.75.

Question 16.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 37

Answer : \(\frac{15}{12}\) = \(\frac{1}{4}\) = 1.25

Explanation: 15 divides by 12 with \(\frac{1}{4}\) times, So the answer is \(\frac{1}{4}\).

Lesson 14.2 Classify Quadrilaterals

Explore and Grow

Draw and label a quadrilateral for each description. If a quadrilateral cannot be drawn, explain why

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 38

Precision
Draw a quadrilateral that meets three of the descriptions above.

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-38

Think and Grow: Classify Quadrilaterals

Key Idea
Quadrilaterals can be classified by their angles and their sides.
A trapezoid is a quadrilateral that has exactly one pair of parallel sides.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 39
A parallelogram is a quadrilateral that has two pairs of parallel sides. Opposite sides have the same length.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 40
A rectangle is a parallelogram that has four right angles.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 41
A rhombus is a parallelogram that has four sides with the same length.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 42
A square is a parallelogram that has four right angles and four sides with the same length.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 43

Example
Classify the quadrilateral in as many ways as possible.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 44

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-44

Show and Grow

Classify the quadrilateral in as many ways as possible.

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 45

Answer:  Square

Explanation: A square is a parallelogram that has four right angles and four sides with the same length.

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 46

Answer: Trapezoid 

Explanation: A trapezoid is a quadrilateral that has exactly one pair of parallel sides

Apply and Grow: Practice

Classify the quadrilateral in as many ways as possible.

Question 3.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 47

Answer: Parallelogram

Explanation: A parallelogram is a quadrilateral that has two pairs of parallel sides. The opposite sides have the same length.

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 48

Answer:  Square

Explanation: A square is a parallelogram that has four right angles and four sides with the same length.

Question 5.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 49

Answer: Rectangle

Explanation: A rectangle is a parallelogram that has four right angles and diagonals are congruent.

Question 6.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 50

Answer: Rhombus

Explanation: A rhombus is a parallelogram with four congruent sides and A rhombus has all the properties of a parallelogram. The diagonals intersect at right angles.

Question 7.
A sign has the shape of a quadrilateral that has two pairs of parallel sides, four sides with the same length, and no right angles

Answer: Parallelogram

Explanation:
Assume that a quadrilateral has parallel sides or equal sides unless that is stated. A parallelogram has two parallel pairs of opposite sides. A rectangle has two pairs of opposite sides parallel, and four right angles.

Question 8.
A tabletop has the shape of a quadrilateral with exactly one pair of parallel sides.

Answer: A trapezoid is a quadrilateral that has exactly one pair of parallel sides. A parallelogram is a quadrilateral that has two pairs of parallel sides.

Question 9.
YOU BE THE TEACHER
Your friend says that a quadrilateral with at least two right angles must be a parallelogram. Is your friend correct? Explain.

Explanation: A trapezoid is only required to have two parallel sides. However, a trapezoid could have one of the sides connecting the two parallel sides perpendicular to the parallel sides which would yield two right angles.

enter image source here

Question 10.
Which One Doesn’t Belong? Which cannot set of lengths be the side lengths of a parallelogram?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 51

Answer: 9 yd, 5 yd, 5 yd, 3 yd

Explanation: A parallelogram is a quadrilateral that has two pairs of parallel sides. Opposite sides have the same length, So the above one is not a parallelogram.

Think and Grow: Modeling Real Life

Example
The dashed line shows how you cut the bottom of a rectangular door so it opens more easily. Classify the new shape of the door.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 52
Draw the new shape of the door.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 53

Answer:
The original shape of the door was a rectangle, so it had one pairs of parallel sides. The new shape of the door has exactly one pair of parallel sides. So, the new shape of the door is a trapezoid.

Show and Grow

Question 11.
DIG DEEPER!
The dashed line shows how you cut the corner of the trapezoidal piece of fabric. The line you cut is parallel to the opposite side. Classify the new shape of the four-sided piece of fabric.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 54

Answer: Parallelogram

Explanation: A parallelogram is a quadrilateral that has two pairs of parallel sides. The opposite sides have the same length.

Question 12.
A farmer encloses a section of land using the four pieces of fencing. Name all of the four-sided shapes that the farmer can enclose with the fencing.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 55

Answer: Parallelogram

Explanation: A parallelogram is a quadrilateral that has two pairs of parallel sides. Opposite sides have the same length, So four-sided shapes of fencing look like Parallelogram.

Classify Quadrilaterals Homework & Practice 14.2

Classify the quadrilateral in as many ways as possible.

Question 1.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 56

Answer: Trapezoid 

Explanation: A trapezoid is a quadrilateral that has exactly one pair of parallel sides

Question 2.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 57

Answer: Trapezoid

Explanation: A Trapezoid is a quadrilateral with exactly one pair of parallel sides. (There may be some confusion about this word depending on which country you’re in. In India and Britain, they say trapezium; in America, trapezium usually means a quadrilateral with no parallel sides.)

Question 3.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 58

Answer: Rectangle

Explanation: A rectangle is a parallelogram that has four right angles and diagonals are congruent.

Question 4.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 59

Answer: Square

Explanation: The diagonals of a square bisect each other and meet at 90°. The diagonals of a square bisect its angles. The opposite sides of a square are both parallel and equal in length. All four angles of a square are equal (each being 360°/4 = 90°, a right angle).

Question 5.
A name tag has the shape of a quadrilateral that has two pairs of parallel sides and four right angles. Opposite sides are the same length, but not all four sides are the same length.

Answer: Rectangle

Explanation: A rectangle is a parallelogram that has four right angles and diagonals are congruent.

Question 6.
A napkin has the shape of a quadrilateral that has two pairs of parallel sides, four sides with the same length, and four right angles.

Answer: Square

Explanation: A square is a parallelogram that has four right angles and four sides of the same length.

Question 7.
Reasoning
Can you draw a quadrilateral that is not a square, but has four right angles? Explain.

Answer: A rectangle is a parallelogram that has four right angles

Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 58

Question 8.
Structure
Plot two more points in the coordinate plane to form a square. What two points can you plot to form a parallelogram? What two points can you plot to form a trapezoid? Do not use the same pair of points twice.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 60

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-60

Question 9.
DIG DEEPER!
Which quadrilateral can be classified as a parallelogram, and rectangle, square, rhombus? Explain.

Answer: Square

Explanation: A square can be defined as a rhombus which is also a rectangle – in other words, a parallelogram with four congruent sides and four right angles. A trapezoid is a quadrilateral with exactly one pair of parallel sides.

Question 10.
Modeling Real Life
The dashed line shows how you fold the flap of the envelope so it closes. Classify the new shape of the envelope.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 61

Answer: Rectangle

Explanation: A rectangle is a parallelogram that has four right angles and diagonals are congruent.

Question 11.
DIG DEEPER!
A construction worker tapes off a section of land using the four pieces of caution tape. Name all of the possible shapes that the worker can enclose with the tape.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 62

Answer: Trapezoid

Explanation: A trapezoid is a quadrilateral that has exactly one pair of parallel sides.

Question 12.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 62.1

Answer: \(\frac{1}{2}\)

Explanation: \(\frac{2}{3}\) –\(\frac{1}{6}\) equal to \(\frac{1}{2}\).

Question 13.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 62.2

Answer: 0.112

Explanation: \(\frac{1}{2}\) is equal to 0.5 and 7/18 is equal to 0.3888.So subtraction from 0.5 to 0.3888 is 0.112.

Question 14.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 62.3

Answer: 0.289

Explanation: \(\frac{2}{5}\) is equal to 0.4 and 1/9 is equal to 0.111,So subtraction from 0.4 to 0.111is 0.289.

Lesson 14.3 Relate Quadrilaterals

Explore and Grow

Label the Venn diagram to show the relationships among quadrilaterals. The first one has been done for you.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 63

Reasoning
Explain how you decided where to place each quadrilateral.

Think and Grow: Relate Quadrilaterals

Key Idea
The Venn diagram shows the relationships among quadrilaterals.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 64

Example
Tell whether the statement is true or false.
All rhombuses are rectangles.
Rhombuses do not always have four right angles.
So, the statement is ___.

Answer: So, the statement is true.

Example
Tell whether the statement is true or false.
All rectangles are parallelograms.
All rectangles have two pairs of parallel sides.
So, the statement is ___.

Show and Grow

Tell whether the statement is true or false. Explain.

Question 1.
Some rhombuses are squares.

Answer: true

Explanation: A rhombus is a quadrilateral (plane figure, closed shape, four sides) with four equal-length sides and opposite sides parallel to each other. All squares are rhombuses, but not all rhombuses are squares. The opposite interior angles of rhombuses are congruent.

Question 2.
All parallelograms are rectangles.

Answer: False

Explanation: A rectangle is a parallelogram with four right angles, so all rectangles are also parallelograms and quadrilaterals. On the other hand, not all quadrilaterals and parallelograms are rectangles. A rectangle has all the properties of a parallelogram

Apply and Grow: Practice

Tell whether the statement is true or false. Explain.

Question 3.
All rectangles are squares.

Answer: False

Explanation: All squares are rectangles, but not all rectangles are squares.

Question 4.
Some parallelograms are trapezoids.

Answer: True

Explanation: A trapezoid has one pair of parallel sides and a parallelogram has two pairs of parallel sides. So a parallelogram is also a trapezoid.

Question 5.
Some rhombuses are rectangles.

Answer: False

Explanation: A rhombus is defined as a parallelogram with four equal sides. Is a rhombus always a rectangle? No, because a rhombus does not have to have 4 right angles. Kites have two pairs of adjacent sides that are equal.

Question 6.
All trapezoids are quadrilaterals.

Answer: True

Explanation: Trapezoids have only one pair of parallel sides; parallelograms have two pairs of parallel sides. The correct answer is that all trapezoids are quadrilaterals. Trapezoids are four-sided polygons, so they are all quadrilaterals

Question 7.
All squares are rhombuses.

Answer: True

Explanation: All squares are rhombuses, but not all rhombuses are squares. The opposite interior angles of rhombuses are congruent

Question 8.
Some trapezoids are squares.

Answer: True

Explanation: A trapezoid is a quadrilateral with at least one pair of parallel sides. In a square, there are always two pairs of parallel sides, so every square is also a trapezoid. Conversely, only some trapezoids are squares

Question 9.
Reasoning
Use the word cards to complete the graphic organizer.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 65

Answer: The first box to be filled with Square, 3d box to be filled with Rectangle,4th box to be filled with trapezoid and final box to be filled with Quadrilateral.

Explanation: A Square can be defined as a rhombus which is also a rectangle, in other words, a parallelogram with four congruent sides and four right angles. A trapezoid is a quadrilateral with exactly one pair of parallel sides.

Question 10.
Reasoning
All rectangles are parallelograms. Are all parallelograms rectangles? Explain.

Answer: True

Explanation: A rectangle is considered a special case of a parallelogram because, A parallelogram is a quadrilateral with 2 pairs of opposite, equal and parallel sides. A rectangle is a quadrilateral with 2 pairs of opposite, equal and parallel sides but also forms right angles between adjacent sides.

Question 11.
Precision
Newton says the figure is a square. Descartes says the figure is a parallelogram. Your friend says the figure is a rhombus. Are all three correct? Explain.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 66

Answer: No

Explanation:  A square has two pairs of parallel sides, four right angles, and all four sides are equal. It is also a rectangle and a parallelogram. A rhombus is defined as a parallelogram with four equal sides. No, because a rhombus does not have to have 4 right angles.

Think and Grow: Modeling Real Life

Example
You use toothpicks to create several parallelograms. You notice that opposite angles of parallelograms have the same measure. For what other quadrilaterals is this also true?
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 66.1
Parallelograms have the property that opposite angles have the same measure. Subcategories of parallelograms must also have this property.
___, ___, and ___ are subcategories of parallelograms.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 67
So, ___, ____, and ____ also have opposite angles with the same measure.

Answer: Rectangle, Rhombus and Square are subcategories of parallelograms.

Show and Grow

Question 12.
You use pencils to create several rhombuses. You notice that diagonals of rhombuses are perpendicular and divide each other into two equal parts. For what other quadrilateral is this also true? Explain your reasoning.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 68

Answer: Square, Parallelogram, Rhombus are perpendicular and divided into the equal parts.

Question 13.
DIG DEEPER!
You place two identical parallelograms side by side. What can you conclude about the measures of adjacent angles in a parallelogram? For what other quadrilaterals is this also true? Explain your reasoning.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 69

Answer:
The adjacent angles of the parallelogram is supplementary.
Opposite angles of the parallelogram are equal.

Relate Quadrilaterals Homework & Practice 14.3

Tell whether the statement is true or false. Explain.

Question 1.
All trapezoids are parallelograms.

Answer: False

Explanation: The pair of opposite sides of a parallelogram are equal and parallel but in the case of trapezium, this is not true in that only one pair of opposite sides are equal. Therefore every parallelogram is not a trapezium.
Question 2.

All rectangles are parallelograms.

Answer: True

Explanation: Each pair of co-interior angles are supplementary, because two right angles add to a straight angle, so the opposite sides of a rectangle are parallel. This means that a rectangle is a parallelogram, so, Its opposite sides are equal and parallel. Its diagonals bisect each other.

Question 3.
All squares are quadrilaterals.

Answer: True

Explanation: A closed figure with four sides. For example, kites, parallelograms, rectangles, rhombuses, squares, and trapezoids are all quadrilaterals. Kite: A quadrilateral with two pairs of adjacent sides that are equal in length; a kite is a rhombus if all side lengths are equal.
Question 4.

Some quadrilaterals are trapezoids.

Answer: True

Explanation: Trapezoids have only one pair of parallel sides, parallelograms have two pairs of parallel sides. A trapezoid can never be a parallelogram. The correct answer is that all trapezoids are quadrilaterals.

Question 5.
Some parallelograms are rectangles.

Answer: True

Explanation: Not all parallelograms are rectangles. A parallelogram is a rectangle if it has four right angles and two pairs of parallel and congruent sides.

Question 6.
All squares are rectangles and rhombuses.

Answer: False

Explanation: No, because all four sides of a rectangle don’t have to be equal. However, the sets of rectangles and rhombuses do intersect, and their intersection is the set of squares, all squares are both a rectangle and a rhombus.

Question 7.
YOU BE THE TEACHER
Newton says he can draw a quadrilateral that is not a trapezoid and not a parallelogram. Is Newton correct? Explain.

Answer: False

Explanation: Trapezoids have only one pair of parallel sides; parallelograms have two pairs of parallel sides. A trapezoid can never be a parallelogram. The correct answer is that all trapezoids are quadrilaterals.

Question 8.
Writing
Explain why a parallelogram is not a trapezoid.

Explanation: a square is a quadrilateral, a parallelogram, a rectangle, and a rhombus Is a trapezoid a parallelogram? No, because a trapezoid has only one pair of parallel sides.

Reasoning
Write always, sometimes, or never to make the statement true? Explain.

Question 9.
A rhombus is ___ a square.

Answer: A rhombus is  some times a square

Explanation: A rhombus is a square. This is sometimes true. Â It is true when a rhombus has 4 right angles. It is not true when a rhombus does not have any right angles.

Question 10.
A trapezoid is __ a rectangle.

Answer: A trapezoid is sometimes a rectangle.

Explanation: A rectangle has one pair of parallel sides.

Question 11.
A parallelogram is ___ a quadrilateral.

Answer: A parallelogram is always a quadrilateral.

Explanation: A parallelogram must have 4 sides, so they must always be quadrilaterals.

Question 12.
DIG DEEPER!
A quadrilateral has exactly three sides that have the same length. Why can the figure not be a rectangle?

Explanation: A rectangle is a parallelogram that has four right angles. opposite sides are in the same length, so the above one is not a rectangle.

Question 13.

Modeling Real Life
You fold the rectangular piece of paper. You notice that the line segments connecting the halfway points of opposite sides are perpendicular. For what other quadrilateral is this also true?
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 70

Explanation: A rectangle is a parallelogram that has four right angles. opposite sides are in the same length, so the above one is not a rectangle.

Question 14.
DIG DEEPER!
You tear off the four corners of the square and arrange them to form a circle. You notice that the sum of the angle measures of a square is equal to 360°. For what other quadrilaterals is this also true?
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 71

Answer: The sum of the angles in a parallelogram are 360°

Review & Refresh

Question 15.
5 pt = ___ c

Answer : 5 pt = 10 c

Explanation:
Convert from pints to cups.
1 pint = 2 cups
5 pints = 5 × 2 cups
5 pints = 10 cups

Question 16.
32 fl oz = ___ c
Answer: 32 fl oz =  4 c
Explanation:
Convert from fl oz to cups.
1 fl oz = 0.125 cups
32 fl oz are equal to 4 c.

Question 17.
20 qt = ___ c

Answer : 20 qt = 80 c

Explanation:
Convert from quarts to cups.
1 quart = 4 cups
20 qt = 20 × 4 cups = 80 cups

Classify Two-Dimensional Shapes Performance Task 14

A homeowner wants to install solar panels on her roof to generate electricity for her house. A solar panel is 65 inches long and 39 inches wide.

Question 1.
a. The shape of the panel has 4 right angles. Sketch and classify the shape of the solar panel.

Answer : Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 41

Explanation: A rectangle is a parallelogram that has four right angles. So the shape of the solar panel is a rectangle.

b. There are 60 identical solar cells in a solar panel, arranged in an array. Ten cells meet to form the length of the panel, and six cells meet to form the width. Classify the shape of each solar cell. Explain your reasoning.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 72

Answer: A rectangle is a parallelogram that has four right angles. So the shape of the solar panel is a rectangle.

Question 2.
The home owner measures three sections of her roof.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 73
a. Classify the shape of each section in as many ways as possible.

Answer:  Right triangle.

Explanation: In a triangle one of the angle is a right angle (90 Deg ) called as Right triangle

Answer: Rectangle

Explanation: Rectangle is a parallelogram with four right angles, so all rectangles are also parallelograms and quadrilaterals. On the other hand, not all quadrilaterals and parallelograms are rectangles.

Answer: Isosceles trapezoid

Explanation: An isosceles trapezoid is a trapezoid whose non-parallel sides are congruent.

b. About how many solar panels can fit on the measured sections of the roof? Explain your reasoning.

Question 3.
One solar panel can produce about 30 kilowatt-hours of electricity each month. The homeowner uses her electric bills to determine that she uses about 1,200 kilowatt-hours of electricity each month.

a. How many solar panels should the homeowner install on her roof?

Answer: 40 Solar panels

Explanation: 40 Solar panels X 30 kilowatt-hours of electricity each month per one solar panel equal to 1,200 kilowatt-hours of electricity per month, So the answer is 40 solar panels.

b. Will all of the solar panels fit on the measured sections of the roof? Explain.

Classify Two-Dimensional Shapes Activity

Quadrilateral Lineup

Directions:

  1. Players take turns spinning the spinner.
  2. On your turn, cover a quadrilateral that matches your spin.
  3. If you land on, Lose a turn, then do not cover a quadrilateral.
  4. The first player to get four in a row twice, horizontally, vertically, Recor diagonally, wins!

Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 74
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 75

Classify Two-Dimensional Shapes Chapter Practice 14

14.1 Classify Triangles

Classify the triangle by its angles and its sides.

Question 1.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 76

Answer: Scalene triangle.
Explanation: A Scalene triangle has no sides that are congruent (Same size) and angles also all different.

Question 2.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 77

Answer: Right triangle.
Explanation: In a triangle one of the angle is a right angle (90 deg ) called as Right triangle.

Question 3.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 78

Answer: Isosceles triangle.

Explanation: An Isosceles triangle has two sides of the same length. Two of its angle also measure equal.

Question 4.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 79

Answer: Equiangular triangle

Explanation: In an equilateral triangle, all the lengths of the sides are equal. In such a case, each of the interior angles

Question 5.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 80

Answer: Right triangle.

Explanation: In a triangle one of the angle is a right angle (90° ) called as Right triangle.

Question 6.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 81

Answer: Scalene triangle.

Explanation: A Scalene triangle has no sides that are congruent (Same size) and angles also all different.

14.2 Classify Quadrilaterals

Classify the quadrilateral in as many ways as possible.

Question 7.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 82

Answer: Square

Explanation: A square is a parallelogram that has four right angles and four sides of the same length.

Question 8.
Big Ideas Math Answers 5th Grade Chapter 14 Classify Two-Dimensional Shapes 83

Answer: Rectangle

Explanation: A rectangle is a parallelogram that has four right angle, Opposite sides are the same length

Question 9.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 84

Answer: Square

Explanation: The diagonals of a square bisect each other and meet at 90°. The diagonals of a square bisect its angles. The opposite sides of a square are both parallel and equal in length. All four angles of a square are equal (each being 360°/4 = 90°, a right angle).

Question 10.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 85

Answer: Isosceles trapezoid

Explanation: An isosceles trapezoid is a trapezoid whose non-parallel sides are congruent.

Question 11.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 86

Answer: Rectangle

Explanation: A rectangle is a parallelogram that has four right angle, Opposite sides are the same length

Question 12.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 87

Answer: Trapezoid

Explanation: A trapezoid is a quadrilateral that has exactly one pair of parallel sides.

Question 13.
Structure
Plot two more points in the coordinate plane to form a quadrilateral that has exactly two a rectangle. What two points can you plot to form a trapezoid? What two points can you plot to form a rhombus? Do not use the same pair of points twice.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 88

Answer:
Big-Ideas-Math-Solutions-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-88

Question 14.
Reasoning
Can you draw a quadrilateral that has exactly two right angles? Explain.

Explanation: A quadrilateral with only 2 right angles and it is called a trapezoid .

enter image source here

Question 15.
Modeling Real Life
The dashed line shows how you break apart the graham cracker. Classify the new shape of each piece of the graham cracker.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 89

Answer: Square

Explanation: The diagonals of a square bisect each other and meet at 90°.

14.3 Relate Quadrilaterals

Tell whether the statement is true or false.

Question 16.
All rectangles are quadrilaterals.

Answer: True

Explanation: A closed figure with four sides. For example, kites, parallelograms, rectangles, rhombuses, squares, and trapezoids are all quadrilaterals

Question 17.
Some parallelograms are squares.

Answer: True

Explanation: Squares fulfill all criteria of being a rectangle because all angles are right angle and opposite sides are equal. Similarly, they fulfill all criteria of a rhombus, as all sides are equal and their diagonals bisect each other.

Question 18.

All trapezoids are rectangles.

Answer: False

Explanation: Rectangles are defined as a four-sided polygon with two pairs of parallel sides. On the other hand, a trapezoid is defined as a quadrilateral with only one pair of parallel sides.

Question 19.
Some rectangles are rhombuses.

Answer: True

Explanation: A rectangle is a parallelogram with all its interior angles being 90 degrees. A rhombus is a parallelogram with all its sides equal. This means that for a rectangle to be a rhombus, its sides must be equal. A rectangle can be a rhombus only if has extra properties which would make it a square

Question 20.
Some squares are trapezoids.

Answer: True

Explanation: The definition of a trapezoid is that it is a quadrilateral that has at least one pair of parallel sides. A square, therefore, would be considered a trapezoid.

Question 21.
All quadrilaterals are squares.

Answer: False

Explanation : Quadrilateral: A closed figure with four sides. For example, kites, parallelograms, rectangles, Square: A rectangle with four sides of equal length. Trapezoid: A quadrilateral with at least one pair of parallel sides So, All quadrilaterals are not squares.

Classify Two-Dimensional Shapes Cumulative Practice 1-14

Question 1.
Which model shows 0.4 × 0.2?
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 90

Answer:

Question 2.
A triangle has angle measures of 82°, 53°, and 45°. Classify the triangle by its angles.
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 91

Answer: C

Explanation: An obtuse triangle has one angle measuring more than 90º but less than 180º (an obtuse angle). It is not possible to draw a triangle with more than one obtuse angle

Question 3.
Which expressions have an estimated difference of \(\frac{1}{2}\) ?
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 92

Answer:

Question 4.
A rectangular prism has a volume of 288 cubic centimeters. The height of the prism is 8 centimeters. The base is a square. What is a side length of the base?
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 93

Answer: A

Explanation: volume of a rectangular prism, multiply its 3 dimensions: length x width x height. The volume is expressed in cubic units. So,6 X 6 X 8 is equal to 288 cubic centimeters, Therefore the side length of the base is 6 cm.

Question 5.
A sandwich at a food stand costs $3.00. Each additional topping costs the same extra amount. The coordinate plan shows the costs, in dollars, of sandwiches with different numbers of additional toppings. What is the cost of a sandwich with 3 additional toppings?
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 94

Answer:

Question 6.
Which statements are true?
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 95

Answer:  The following statements are true
Option 2,option 3 and option 4 .

Explanation :
Option 2 :
All squares are rectangles are parallelograms is true, why because squares fulfill all criteria of being a rectangle because all angles are right angle and opposite sides are equal. Similarly, they fulfill all criteria of a rhombus, as all sides are equal and their diagonals bisect each other.
Option 3: All squares are rhombuses is true, why because All squares are rhombuses, but not all rhombuses are squares. The opposite interior angles of rhombuses are congruent.
Option 4:  Every trapezoid is a quadrilateral is true, why because Trapezoids have only one pair of parallel sides; parallelograms have two pairs of parallel sides.

Question 7.
Your friend makes a volcano for a science project. She uses 10 cups of vinegar. How many pints of vinegar does he use?
Big Ideas Math Solutions Grade 5 Chapter 14 Classify Two-Dimensional Shapes 96

Answer: Option B

Explanation: 1 cup is equal to  0.5 pints, therefore 10 cups are equal to 5 pints.

Question 8.
The volume of the rectangular prism is 432 cubic centimeters. What is the length of the prism?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 97

Answer: Option A

Explanation: volume of a rectangular prism, multiply its 3 dimensions: length x width x height. The volume is expressed in cubic units.
So, 6 cm X 9 cm X 8 cm is equal to 432 cubic centimeters.
Therefore the length of prim is 9 cm.

Question 9.
Descartes draws a pentagon by plotting another point in the coordinate plane and connecting the points. Which coordinates could he use?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 98

Answer:

Question 10.
Newton rides to the dog park in a taxi. He owes the driver $12. He calculates the driver’s tip by multiplying $12 by 0.15. How much does he pay the driver, including the tip?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 99

Answer: Option  C

Explanation: Driver cost $12 + ($12 X 0.15 )= 12+1.8 =13.8
Therefore answer is $13.8.

Question 11.
A quadrilateral has four sides with the same length, two pairs of parallel sides, and four 90° angles. Classify the quadrilateral in as many ways as possible.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 100

Answer: Square, Parallelogram

Explanation: A quadrilateral has four sides with the same length, two pairs of parallel sides and four 90° angles is called as square. All squares are parallelograms.

Question 12.
Which ordered pair represents the location of a point shown in the coordinate plane?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 101

Answer:

Question 13.
What is the product of 5,602 and 17?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 102

Answer: 95234

Explanation: 5602 X 17 is equal to 95234.

Question 14.
Which pair of points do not lie on a line that is perpendicular to the x-axis?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 103

Answer:

Question 15.
Newton has a gift in the shape of a rectangular prism that has a volume of 10,500 cubic inches. The box he uses to ship the gift is shown.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 104
Part A What is the volume of the box?
Part B What is the volume, in cubic inches, of the space inside the box that is not taken up by gift? Explain.?

Answer:

Question 16.
Which expressions have a product greater than \(\frac{5}{6}=\)?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 105

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-105

Question 17.
Newton is thinking of a shape that has 4 sides, only one pair of parallel sides, and angle measures of 90°, 40°, 140°, and 90°. Which is Newton’s shape?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 106

Answer: D

Explanation: Trapezoid Only one pair of opposite sides is parallel.

Question 18.
Which rectangular prisms have a volume of 150 cubic feet?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 107

Answer: Option 1

Explanation: volume of a rectangular prism, multiply its 3 dimensions: length x width x height. The volume is expressed in cubic feet.
So,2 ft X 25 ft X 3 ft is equal to 150 cubic ft, Therefore the right answer is option 1.

Classify Two-Dimensional Shapes Steam Performance Task 1-14

Each student in your grade makes a constellation display by making holes for the stars of a constellation on each side of the display. Each display is a rectangular prism with a square base.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 108

Question 1.
Your science teacher orders a display for each student. The diagram shows the number of packages that can fit in a shipping box.
a. How many displays come in one box?
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 109
b. There are 108 students in your grade. How many boxes of displays does your teacher order? Explain.
c. The volume of the shipping box is 48,000 cubic inches. What is the volume of each display?
d. The height of each display is 15 inches. What are the dimensions of the square base?
e. Estimate the dimensions of the shipping box.
f. You paint every side of the display except the bottom. What is the total area you will paint?
g. You need a lantern to light up your display. Does the lantern fit inside of your display? Explain.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 111

Question 2.
On one side of your display, you create an image of the constellation Libra. Each square on the grid is 1 square inch.
a. Classify the triangle formed by the points of the constellation.
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 112

Answer: Equiangular triangle
Explanation: In an equilateral triangle, all the lengths of the sides are equal. In such a case, each of the interior angles

b. What are the coordinates of the points of the constellation?
c. What is the height of the constellation on your display?

Question 3.
You use the coordinate plane to create the image of the Big Dipper.
a. Plot the points A(6, 2), B(8, 2), C(7, 6), D(5, 5), E(7, 9), F(6, 12), and G(4, 14).
b. Draw lines connecting the points of quadrilateral ABCD. Draw \(\overline{C E}\), \(\overline{E F}\) and \(\overline{F G}\).
Big Ideas Math Answer Key Grade 5 Chapter 14 Classify Two-Dimensional Shapes 113

Answer:
Big-Ideas-Math-Answer-Key-Grade-5-Chapter-14-Classify-Two-Dimensional-Shapes-113
c. Is quadrilateral ABCD a trapezoid? How do you know?

Answer: Yes ABCD is a trapezoid because all sides are not equal and only one pair has parallel sides.

Question 4.
Use the Internet or some other resource to learn more about constellations. Write one interesting thing you learn.

Answer: A constellation is a group of stars that appears to form a pattern or picture like Orion the Great Hunter, Leo the Lion, or Taurus the Bull. Constellations are easily recognizable patterns that help people orient themselves using the night sky. There are 88 “official” constellations.

Conclusion:

Sharpen your math skills by practicing the problems from Big Ideas Math Book 5th Grade Answer Key Chapter 14 Classify Two-Dimensional Shapes. All the solutions of Grade 5 Chapter 14 Classify Two-Dimensional Shapes are prepared by the math professionals. Thus you can prepare effectively and score good marks in the exams.

Big Ideas Math Answers Grade 6 Chapter 10 Data Displays

Big Ideas Math Answers Grade 6 Chapter 10 Data Displays

Big Ideas Math Answers Grade 6 Chapter 10 Data Displays: Free step by step solutions to Big Ideas Math Answers Grade 6 Chapter 10 Data Displays are available here. You can learn the concepts of Stem and leaf plot, histogram, shapes of distribution, Box and Whisker plots in an easy manner. Hence Download Answer Key of Big Ideas Math 6th Grade Chapter 10 Data Displays for free of cost. Start practicing the Big Ideas Math Answers Grade 6 Data Displays problems and score good marks in the exams.

Big Ideas Math Book 6th Grade Answer Key Chapter 10 Data Displays

Solve the problems on Data Displays listed below and become a master in maths. I know it is difficult for parents to explain the homework problems. So, in order to help them, we are providing the solutions for BIM Math 6th Grade Answer Key Chapter 10 Data Displays. Make use of the Big Ideas Math Grade 6 Solution Key and make your child completer their homework in time.

Performance Task

Lesson 1 – Stem-and-Leaf Plots

Lesson 1 - Stem-and-Leaf Plots

Lesson 2 – Histograms

Lesson 2 - Histograms

Lesson 3 – Shapes of Distributions

Lesson 3 - Shapes of Distributions

Lesson 4 – Choosing Appropriate Measures

Lesson 5 – Box-and-Whisker Plots

Lesson 5 - Box-and-Whisker Plots

Data Displays

Data Displays STEAM Video/Performance Task

STEAM Video
Choosing a Dog
Different animals grow at different rates. Given a group of puppies, describe an experiment that you can perform to compare their growth rates. Describe a real-life situation where knowing an animal’s growth rate can be useful.

Watch the STEAM Video “Choosing a Dog.” Then answer the following questions.
1. Using Alex and Tony’s stem-and-leaf plots below, describe the weights of most dogs at 3 months of age and 6 months of age.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 1

Answer:
Weight of dogs at 3 months:
29, 34, 40, 40, 41, 42, 44, 46, 47, 48, 48, 53
Weight of dogs at 6 months:
57, 58, 61, 61, 63, 64, 65, 65, 65, 66, 67, 73
2. Make predictions about how the stem-and-leaf plot will look after 9 months and after 1 year.
Weight of dogs at 9 months
77, 78, 81, 81, 83, 84, 85, 85, 85, 86, 87, 91
Weight of dogs at 1 year
87, 88, 89, 93, 94, 95, 95, 95, 95, 96, 97, 99

Performance Task
Classifying Dog Breeds by Size
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 2
After completing this chapter, you will be able to use the concepts you learned to answer the questions in the STEAM Video Performance Task. You will be given names, breeds, and weights of full-grown dogs at a shelter.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 3
You will use a data display to make conclusions about the sizes of dogs at the shelter. Why might someone be interested in knowing the sizes of dogs at a shelter?

Answer:
Because they need time to adjust.
You can buy the dog shelter based on the height and weight of the dogs.

Data Displays Getting Ready for Chapter 10

Chapter Exploration
Work with a partner. A famous data set was collected in Scotland in the mid-1800s. It contains the chest sizes(in inches) of 5738 men in the Scottish Militia.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 4
1. Describe the shape of the bar graph shown above.

Answer: The shape of the above graph is Histogram.

2. Which of the following data sets have a bar graph that is similar in shape to the bar graph shown above? Assume the sample is selected randomly from the population. Explain your reasoning.
a. the heights of 500 women
b. the ages of 500 dogs
c. the last digit of 500 phone numbers
d. the weights of 500 newborn babies

Answer: The last digit of 500 phone numbers is similar in shape to the bar graph shown above.

3. Describe two other real-life data sets, one that is similar in shape to the bar graph shown above and one that is not.

Answer: The height of 500 students in the school and age of students in the classroom.

Vocabulary
The following vocabulary terms are defined in this chapter. Think about what each term might mean and record your thoughts.
stem-and-leaf plot
box-and-whisker plot
frequency table
five-number summary

Answer:
i. stem-and-leaf plot: A stem-and-leaf display or stem-and-leaf plot is a device for presenting quantitative data in a graphical format, similar to a histogram, to assist in visualizing the shape of a distribution.
ii. A box and whisker plot—also called a box plot—displays the five-number summary of a set of data. The five-number summary is the minimum, first quartile, median, third quartile, and maximum. In a box plot, we draw a box from the first quartile to the third quartile. A vertical line goes through the box at the median.
iii. In statistics, a frequency distribution is a list, table, or graph that displays the frequency of various outcomes in a sample. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval.
iv. The five-number summary is a set of descriptive statistics that provides information about a dataset.

Lesson 10.1 Stem-and-Leaf Plots

EXPLORATION 1

Making a Data Display
Workwith a partner. The list below gives the ages of women when they became first ladies of the United States.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 1
a. The incomplete data display shows the ages of the first ladies in the left column of the list above. What do the numbers on the left represent? What do the numbers on the right represent?
b. This data display is called a stem-and-leaf plot. What numbers do you think represent the stems? leaves? Explain your reasoning.
c. Complete the stem-and-leaf plot using the remaining ages.

Answer:
Big-Ideas-Math-Answer-Key-Grade-6-Chapter-10-Data-Displays-10.1-1
The tens place represents the stem and the ones place represents the leaf.
d. REASONING
Write a question about the ages of first ladies that is easier to answer using a stem-and-leaf plot than a dot plot.
Answer: Make the stem and leaf plot to find the ages of the first ladies.
By using the above data you can make the stem and leaf plot easily.

Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 2

Key Idea
Stem-and-Leaf Plots
A stem-and-leaf plot uses the digits of data values to organize a data set. Each data value is broken into a stem(digit or digits on the left) and a leaf(digit or digits on the right).
A stem-and-leaf plot shows how data are distributed.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 4

EXAMPLE 1

Making a Stem-and-Leaf Plot
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 5
Make a stem-and-leaf plot of the lengths of the 12 phone calls.
Step 1: Order the data.
2, 3, 5, 6, 10, 14, 18, 23, 23, 30, 36, 55
Step 2: Choose the stems and the leaves. Because the data values range from 2 to 55, use the tens digits for the stems and the ones digits for the leaves. Be sure to include the key.
Step 3: Write the stems to the left of the vertical line.
Step 4: Write the leaves for each stem to the right of the vertical line.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 6

Try It
Question 1.
Make a stem-and-leaf plot of the hair lengths.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 7
Answer:
Step 1: Order the data.
1, 1, 1, 2, 2, 4, 5, 5, 7, 12, 20, 23, 27, 30, 32, 33, 38, 40, 44, 47
Step 2: Choose the stems and the leaves. Because the data values range from 1 to 47, use the tens digits for the stems and the ones digits for the leaves. Be sure to include the key.
Step 3: Write the stems to the left of the vertical line.
Step 4: Write the leaves for each stem to the right of the vertical line.
Big Ideas Math Answers Grade 6 Chapter 12 Data Displays img_5

EXAMPLE 2
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 8
The stem-and-leaf plot shows student quiz scores. (a) How many students scored less than 8 points? (b) How many students scored at least 9 points? (c) How are the data distributed?
a. There are five scores less than 8 points:
6.6, 7.0, 7.5, 7.7, and 7.8.
Five students scored less than 8 points.10
b. There are four scores of at least 9 points:
9.0, 9.2, 9.9, and 10.0.
Four students scored at least 9 points.
c. There are few low quiz scores and few high quiz scores. So, most of the scores are in the middle, from 8.1 to 8.9 points.

Try It
Question 2.
Use the grading scale at the right.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 9
a. How many students received a B on the quiz?
Answer: There are 9 students who received a B on the quiz.
b. How many students received a C on the quiz?
Answer: There are 4 students who received a C on the quiz.

Self – Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 3.
MAKING A STEM-AND-LEAF PLOT
Make a stem-and-leaf plot of the data values 14, 22, 9, 13, 30, 8, 25, and 29.
Answer:
The ones represent the leaf and the tens place represent the stem.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_6

Question 4.
WRITING
How does a stem-and-leaf plot show the distribution of a data set?
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 10
Answer:
02, 03, 1, 21, 26, 30, 34, 36, 44, 45, 48, 48, 49

Explanation:
A stem-and-leaf display or stem-and-leaf plot is a device for presenting quantitative data in a graphical format, similar to a histogram, to assist in visualizing the shape of a distribution.

Question 5.
REASONING
Consider the stem-and-leaf plot shown.
a. How many data values are at most 10?
Answer: By seeing the above stem and leaf plot we can find the data values of at most 10.
The data values less than or equal to 10 are 3.
b. How many data values are at least 30?
Answer: By seeing the above stem and leaf plot we can find the data values of at least 30.
The data values of less than 30 are 5.
c. How are the data distributed?
Answer: The data is distributed according to the stem and leaf plot. The tens place is given to the stem and the ones place is given to the leaf.

Question 6.
CRITICAL THINKING
How can you display data whose values range from 82 through 129 in a stem-and-leaf plot?
Answer:
Given data range from 82 to 129
Considering 9 random values between 82 and 129.
From the data 86, 91, 93, 100, 107, 109, 113, 122, 124, stem and leaf are calculated for each number.
86 is split into 8 (stem) and 6 (leaf)
91 is split into 9 (stem) and 1 (leaf)
93 is split into 9 (stem) and 3 (leaf)
100 is split into 10 (stem) and 0 (leaf)
107 is split into 10 (stem) and 7 (leaf)
109 is split into 10 (stem) and 9 (leaf)
113 is split into 11 (stem) and 3 (leaf)
122 is split into 12 (stem) and 2 (leaf)
124 is split into 12 (stem) and 4 (leaf)

Big Ideas Math Grade 6 Chapter 10 Data Displays img_7

EXAMPLE 3
Modeling Real Life
The stem-and-leaf plot shows the heights of several houseplants. Use the data to answer the question, “What is a typical height of a houseplant?
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 11
Find the mean, median, and mode of the data. Use the measure that best represents the data to answer the statistical question.
Mean: \(\frac{162}{15}\) = 10.8
Median: 11
Mode: 11
The mean is slightly less than the median and mode, but all three measures can be used to represent the data.
So, the typical height of a houseplant is about 11 inches.

Self-Assessment for Problem Solving

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 12
Question 7.
DIG DEEPER!
Work with a partner. Use two number cubes to conduct the following experiment. Then use a stem-and-leaf plot to organize your results and describe the distribution of the data.
• Toss the cubes and find the product of the resulting numbers. Record your results.
• Repeat this process 30 times.
Answer:
From the data 15,4,6,30,6,8,36,12,12,6,6,4,15,10,4,2,20,3,15,6,4,6,3,10,3,20,4,12,4,20.
Stem and leaf are calculated for each number.
15 is split into 1 (stem) and 5 (leaf)
04 is split into 0 (stem) and 4 (leaf)
06 is split into 0 (stem) and 6 (leaf)
30 is split into 3 (stem) and 0 (leaf)
06 is split into 0 (stem) and 6 (leaf)
08 is split into 0 (stem) and 8 (leaf)
36 is split into 3 (stem) and 6 (leaf)
12 is split into 1 (stem) and 2 (leaf)
12 is split into 1 (stem) and 2 (leaf)
06 is split into 0 (stem) and 6 (leaf)
06 is split into 0 (stem) and 6 (leaf)
04 is split into 0 (stem) and 4 (leaf)
15 is split into 1 (stem) and 5 (leaf)
10 is split into 1 (stem) and 0 (leaf)
04 is split into 0 (stem) and 4 (leaf)
02 is split into 0 (stem) and 2 (leaf)
20 is split into 2 (stem) and 0 (leaf)
03 is split into 0 (stem) and 3 (leaf)
15 is split into 1 (stem) and 5 (leaf)
06 is split into 0 (stem) and 6 (leaf)
04 is split into 0 (stem) and 4 (leaf)
06 is split into 0 (stem) and 6 (leaf)
03 is split into 0 (stem) and 3 (leaf)
20 is split into 2 (stem) and 0 (leaf)
04 is split into 0 (stem) and 4 (leaf)
12 is split into 1 (stem) and 2 (leaf)
04 is split into 0 (stem) and 4 (leaf)
20 is split into 2 (stem) and 0 (leaf)
Big ideas Math Grade 6 Chapter 10 Data Displays img_8

Question 8.
The stem-and-leaf plot shows the weights (in pounds) of several puppies at a pet store. Use the data to answer the question, “How much does a puppy at the pet store weigh?
Answer:
We can use the mean of the data. To find the mean, add the data then divide the sum of the number of data
(8+12+15+17+18+24+24+31)/8 = 149/8 = 18.625
To the nearest pound, a puppy weighs about 19 pounds

Stem-and-Leaf Plots Homework & Practice 10.1

Review & Refresh

Find and interpret the mean absolute deviation of the data.
Question 1.
8, 6, 8, 5, 3, 10, 11, 5, 7
Answer:
First, arrange the given values in the ascending order.
3, 5, 5, 6, 7, 8, 8, 10, 11
We find the mean of the data
mean = (3 + 5 + 5 + 6 + 7 + 8 + 8 + 10 + 11)/9
mean = 7

Question 2.
55, 46, 39, 62, 55, 51, 48, 60, 39, 45
Answer:
First, arrange the given values in the ascending order.
39, 39, 45, 46, 48, 51, 55, 55, 60, 62
We find the mean of the data
mean = (39 + 39 + 45 + 46 + 48 + 51 + 55 + 55 + 60 + 62)/10
mean = 50

Question 3.
37, 54, 41, 18, 28, 32
Answer:
First, arrange the given values in the ascending order.
18, 28, 32, 37, 41, 54
We find the mean of the data
mean = (18+28+32+37+41+54)/6
mean = 35

Question 4.
12, 25, 8, 22, 6, 1, 10, 4
Answer:
First, arrange the given values in ascending order.
1, 4, 6, 8, 10,12, 22, 25
mean = (1+ 4 + 6 + 8 + 10 + 12 + 22 + 25)/8
mean = 11

Use the Distributive Property to simplify the expression.
Question 5.
5(n + 8)
Answer: 5n + 40

Explanation:
5(n + 8) = 5 × n + 5 × 8
5n + 40

Question 6.
7(y – 6)
Answer: 7y – 42

Explanation:
7(y – 6) = 7 × y – 7 × 6
7y – 42

Question 8.
14(2b + 3)
Answer: 28b + 42

Explanation:
14(2b + 3) = 14 × 2b + 14 × 3
28b + 42

Question 9.
11(9 + s)
Answer: 99 + 11s

Explanation:
11(9 + s) = 11 × 9 + 11 × s
99 + 11s

Solve the equation.
Question 9.
\(\frac{p}{2}\) = 8
Answer: 16

Explanation:
\(\frac{p}{2}\) = 8
p = 8 × 2
p = 16

Question 10.
28 = 6g
Answer: 4.66

Explanation:
28 = 6g
g = 28/6 = 4.66
Thus g = 4.66

Question 11.
3d ÷ 4 = 9
Answer: 12

Explanation:
3d ÷ 4 = 9
3d = 9 × 4
3d = 36
d = 36/3
d = 12
Thus d = 12

Question 12.
10 = \(\frac{2z}{3}\)
Answer:

Explanation:
10 = \(\frac{2z}{3}\)
10 × 3 = 2z
2z = 30
z = 30/2
z = 15
So, z = 15

Concepts, Skills, & Problem Solving

REASONING
Write a question that is easier to answer using the stem-and-leaf plot than a dot plot. (See Exploration 1, p. 457.)
Question 13.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 13
Answer:
Make a stem leaf plot to find the number of customers who visit your shop.
12, 13, 16, 17, 20, 21, 21, 23, 23, 28, 28, 32, 33, 34, 34, 35, 35, 36, 39, 39, 40, 41, 41, 42, 44, 46, 47, 48, 49, 49

Question 14.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 14
Answer:
Make the stem leaf plot to find the number of text messages you received per hour.
40, 40, 42, 46, 46, 49, 51, 51, 53, 53, 57, 57, 57, 59, 59, 59, 61, 62, 62, 65, 65, 66, 67, 68, 68, 70, 72, 72, 73, 74.

MAKING A STEM-AND-LEAF PLOT Make a stem-and-leaf plot of the data.
Question 15.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 15
Answer:
We have to write the stem and leaf plot for the above table.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_9

Question 16.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 16
Answer:
We have to write the stem and leaf plot for the above table.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_10

Question 17.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 17
Answer:
We have to write the stem and leaf plot for the above table.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_10

Question 18.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 18
Answer:
We have to write the stem and leaf plot for the above table.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_12

Question 19.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 19
Answer:
We have to write the stem and leaf plot for the above table.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_13

Question 20.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 20
Answer:
We have to write the stem and leaf plot for the above table.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_14

Question 21.
YOU BE THE TEACHER
Your friend makes a stem-and-leaf plot of the data. Is your friend correct? Explain your reasoning.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 21
51, 25, 47, 42, 55, 26, 50, 44, 55
Answer: your friend is correct

Explanation:
In stem and leaf plot the tens place represent stem and the ones place represent the leaf.

MODELING REAL LIFE
The stem-and-leaf plot shows the numbers of confirmed cases of a virus in 15 countries.
Question 22.
How many of the countries have more than 60 confirmed cases?
Answer: 6 countries

Explanation:
By seeing the above stem and leaf plot we can find the number of cases more than 60.
The number of leaf represents the number of countries.
62, 63, 63, 67, 75, 97.
Thus there are 6 countries that have more than 60 confirmed cases.

Question 23.
Find the mean, median, mode, range, and interquartile range of the data.
Answer:
41, 41, 43, 43, 45, 50, 52, 53, 54, 62, 63, 63, 67, 75, 97
In its simplest mathematical definition regarding data sets, the mean used is the arithmetic mean, also referred to as mathematical expectation, or average.
Mean:
mean = (41+41+43+43+45+50+52+53+54+62+63+63+67+75+97)/15
mean = 56.6
Median:
In the odd cases where there are only two data samples or there is an even number of samples where all the values are the same, the mean and median will be the same.
41, 41, 43, 43, 45, 50, 52, 53, 54, 62, 63, 63, 67, 75, 97
So, the median of the given data is 53.
Mode:
The mode is the value in a data set that has the highest number of recurrences.
41, 41, 43, 43, 45, 50, 52, 53, 54, 62, 63, 63, 67, 75, 97
mode = 41, 43, 63 (Repeated 2 times)

Question 24.
How are the data distributed?
Answer:
The distribution of a data set is the shape of the graph when all possible values are plotted on a frequency graph. Usually, we are not able to collect all the data for our variable of interest.

Question 25.
Which data value is an outlier? Describe how the outlier affects the mean.
Answer:
Outliers affect the mean value of the data but have little effect on the median or mode of a given set of data.
Example: A student receives a zero on a quiz and subsequently. has the following scores: 0, 70, 70, 80, 85, 90, 90, 90, 95, 100. Outlier: 0.

Question 26.
REASONING
Each stem-and-leaf plot below has a mean of 39. Without calculating, determine which stem-and-leaf plot has the lesser mean absolute deviation. Explain your reasoning.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 23
Answer:
i. 23, 27, 30, 32, 36, 39, 41, 42, 45, 48, 51, 54
Mean = (23+27+30+32+36+39+41+42+45+48+51+54)/12
Mean = 39
The mean absolute deviation is 7.833
ii. 22, 24, 25, 28, 29, 33, 38, 45, 53, 56, 57, 58
Mean = (22+24+25+28+29+33+38+45+53+56+57+58)/12
Mean = 39
The mean absolute deviation is 12.333
Thus the first stem and leaf plot has the lesser mean absolute deviation.

Question 27.
DIG DEEPER!
The stem-and-leaf plot shows the daily high temperatures (in degrees Fahrenheit) for the first 15 days of June.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 24
a. When you include the daily high temperatures for the rest of the month, the mean absolute deviation increases. Draw a stem-and-leaf plot that could represent all of the daily high temperatures for the month.

Answer:
Big Ideas Math Answers Grade 6 Chapter 12 Data Displays img_6
b. Use your stem-and-leaf plot from part(a) to answer the question, “What is a typical daily high temperature in June?”
Answer: 89°F is the high temperature in the month of June.

Question 28.
CRITICAL THINKING
The back-to-back stem-and-leaf plot shows the 9-hole golf scores for two golfers. Only one of the golfers can compete in a tournament as your teammate. Use measures of center and measures of variation to support choosing either golfer.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.1 25
Answer:
The scores of Rich are
35, 37, 41, 42, 43, 44, 45, 48
The scores of Will are
42, 43, 44, 44, 46, 47, 47, 48, 49
Will can compete in the tournament.

Lesson 10.2 Histograms

EXPLORATION 1

Performing an Experiment
Work with a partner.
a. Make the airplane shown from a single sheet of 8\(\frac{1}{2}\) by-11-inch paper. Then design and make your own paper airplane.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 1
b. PRECISION
Fly each airplane 20 times. Keep track of the distance flown each time. Specify Units. What units will you use to measure the distance flown? Will the units you use affect the results in your frequency table? Explain.
c. A frequency table groups data values into intervals. The frequency is the number of values in an interval. Use a frequency table to organize the results for each airplane.
d. MODELING Represent the data in the frequency tables graphically. Which airplane flies farther? Explain your reasoning.
Answer:

Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 3

Key Idea
Histograms
p. 463 frequency, A histogram is a bar graph that shows the frequencies of data values in intervals of the same size.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 4
The height of a bar represents the frequency of the values in the interval.

EXAMPLE 1
Making a Histogram
The frequency table shows the numbers of laps that people in a swimming class completed today. Display the data in a histogram.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 5
Step 1: Draw and label the axes.
Step 2: Draw a bar to represent the frequency of each interval.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 6

Try It
Question 1.
The frequency table shows the ages of people riding a roller coaster. Display the data in a histogram.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 7
Answer:
BIM Grade 6 Answers Chapter 10 Data Displays img_21

EXAMPLE 2
Using a Histogram
The histogram shows winning speeds at the Daytona 500.
(a) Which interval contains the most data values?
(b) How many of the winning speeds are less than 140 miles per hour?
(c) How many of the winning speeds are at least 160 miles per hour?
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 8.1
a. The interval with the tallest bar contains the most data values.
So, the 150−159 miles per hour interval contains the most data values.
b. One winning speed is in the 120−129 miles per hour interval, and eight winning speeds are in the 130−139 miles per hour interval.
So, 1 + 8 = 9 winning speeds are less than 140 miles per hour.
c. Eight winning speeds are in the 160−169 miles per hour interval, and five winning speeds are in the 170−179 miles per hour interval.
So, 8 + 5 =13 winning speeds are at least 160 miles per hour.

Try It
Question 2.
The histogram shows the numbers of hours that students in a class slept last night.
a. How many students slept at least 8 hours?
b. How many students slept less than 12 hours?
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 8

Answer:

A. Number of students who slept for 8 to 11 hours is 8.
Number of students who slept for 12 to 15 hours is 3.
The total number of students who slept for atleast 8 hours is 8.

B. Number of students who slept for 8 to 11 hours is 8.
Number of students who slept for 4 to 7 hours is 8.
Number of students who slept for 0 to 3 hours is 2.
Thus the number of students who slept for less than 12 hours is 8 + 8 + 2 = 18 students

EXAMPLE 3
Comparing Data Displays
The data displays show how many push-ups students in a class completed for a physical fitness test. Which data display can you use to find how many students are in the class? Explain.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 9
You can use the histogram because it shows the number of students in each interval. The sum of these values represents the number of students in the class. You cannot use the circle graph because it does not show the number of students in each interval.

Try It
Question 3.
Which data display should you use to describe the portion of the entire class that completed 30−39 push-ups? Explain.
Answer: You should use the percentage of the number of students in the interval of 30-39 to find the completed push-ups.
The portion of the entire class that completed 30−39 push-ups is 24%

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal
Question 4.
MAKING A HISTOGRAM
The table shows the numbers of siblings of students in a class.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 10
a. Display the data in a histogram.b. Explain how you chose reasonable intervals for your histogram in part
Answer:

Question 5.
NUMBER SENSE
Can you find the range and the interquartile range of the data in the histogram? If so, find them. If you cannot find them, explain why not.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 11
Answer:

EXAMPLE 4
Modeling Real Life made using the data displays in Example 3?
A. Twelve percent of the class completed 9 push-ups.
B. Five students completed at least 10 and at most 19 push-ups.
C. At least one student completed more than 39 push-ups.
D. Less than \(\frac{1}{4}\) of the class completed 30 or more push-ups.
The circle graph shows that12% completed 0−9 push-ups, but you cannot determine how many completed exactly 9. So, Statement A cannot be made.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 12
In the histogram, the bar height for the 10−19 interval is 5, and the bar height for the 40−49 interval is 1. So, Statements B and C can be made.
The circle graph shows that24% completed 30−39 push-ups, and 4% completed 40−49 push-ups. So, 24% + 4% =28% completed 30 or more push-ups. Because \(\frac{1}{4}\) = 25% and 28% > 25%, Statement D cannot be made.
The correct answers are A and D.

Self-Assessment for Problem Solving
Solve each exercise. Then rate your understanding of the success criteria in your journal.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 13
Question 6.
The histogram shows the numbers of rebounds per game for a middle school basketball player in a season.
a. Which interval contains the most data values?
b. 54 How many games did the player play during the season?
c. In what percent of the games did the player have 4 or more rebounds?
Answer:

Question 7.
Determine whether you can make each statement by using the histogram in the previous exercise.Explain.Rebounds
a. The basketball player had 2 rebounds in 6 different games.
b. The basketball player had more than 1 rebound in 9 different games
Answer:

Histograms Homework & Practice 10.2

Review & Refresh

Make a stem-and-leaf plot of the data.
Question 1.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 14
Answer:
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays img_11

Question 2.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 15
Answer:
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays img_12

Find the percent of the number.
Question 3.
25% of 180
Answer: 45

Explanation:
25% = 25/100
25/100 × 180
We get 45
So, 25% of 180 is 45.

Question 4.
30% of 90
Answer: 27

Explanation:
30% = 30/100
30/100 × 90 = 27
So, 30% of 90 is 27

Question 5.
16% of 140
Answer: 22.4

Explanation:
16% = 16/100
16/100 × 140 = 22.4
So, 16% of 140 is 22.4

Question 6.
64% of 807.
Answer: 516.48

Explanation:
64% = 64/100
64/100 × 807 = 516.48
So, 64% of 807 is 516.48

Question 7.
What is the least common multiple of 7 and 12?
A. 28
B. 42
C. 84
D. 168
Answer: 84

Explanation:
Find and list multiples of each number until the first common multiple is found. This is the lowest common multiple.
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98
Multiples of 12:
12, 24, 36, 48, 60, 72, 84, 96, 108
Therefore,
LCM(7, 12) = 84
Thus the correct answer is option c.

Concepts, Skills, & Problem Solving
MAKING A FREQUENCY TABLE Organize the data using a frequency table. (See Exploration 1, p. 463.)
Question 8.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 16
Answer:

BIM Grade 6 Answer Key Chapter 10 Data Displays img_13

Question 9.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 17
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_14

MAKING A HISTOGRAM Display the data in a histogram.
Question 10.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 18
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_15

Question 11.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 19
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_16

Question 12.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 20
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_17

Question 13.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 21
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_18

Question 14.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 22
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_19

Question 15.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 23
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_20

Question 16.
YOU BE THE TEACHER
Your friend displays the data in a histogram. Is your friend correct? Explain your reasoning.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 24
Answer: yes your friend is correct.
The frequency table matches the histogram.

Question 17.
MODELING REAL LIFE
The histogram shows the numbers of magazines read last month by the students in a class.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 25
a. Which interval contains the fewest data values?
Answer: The interval 4-5 has the fewest data values.
b. How many students are in the class?
Answer:
0-1 = 2
2-3 = 15
4-5 = 0
6-7 = 3
2 + 15 + 3 = 20
c. What percent of the students read fewer than six magazines?
Answer: By seeing the above histogram we can say that 25% of the students read fewer than six magazines.

Question 18.
YOU BE THE TEACHER
Your friend interprets the histogram. Is your friend correct? Explain your reasoning.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 26
Answer:
Compare your friend with the above histogram.
By seeing the above histogram we can say that it took 12 seconds to download songs.
So, your friend is correct.

Question 19.
REASONING
The histogram shows the percent of the voting-age population in each state who voted in a presidential election. Explain whether the graph supports each statement.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 27
a. Only 40% of one state voted.
b. In most states, between 50% and 64.9% voted.
c. The mode of the data is between 55% and 59.9%
Answer:

Question 20.
PROBLEM SOLVING
The histograms show the areas of counties in Pennsylvania and Indiana. Which state do you think has the greater area? Explain.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 28
Answer:

Question 21.
MODELING REAL LIFE
The data displays show how many pounds of garbage apartment residents produced in 1 week. Which data display can you use to find how many residents produced more than 25 pounds of garbage? Explain.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 29
Answer:

Question 22.
REASONING
Determine whether you can make each statement by using the data displays in Exercise 21. Explain your reasoning.
a. One resident produced 10 pounds of garbage.
b. Twelve residents produced between 20 and 29 pounds of garbage.
Answer:

Question 23.
DIG DEEPER!
The table shows the lengths of some whales in a marine sanctuary.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays 10.2 30
a. Make a histogram of the data starting with the interval 51−55.
b. Make another histogram of the data using a different-sized interval.
c. Compare and contrast the two histograms.
Answer:

Question 24.
LOGIC
Can you find the mean or the median of the data in Exercise 17? Explain.
Answer:

Lesson 10.3 Shapes of Distributions

Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 1

EXPLORATION
Describing Shapes of Distributions
Work with a partner. The lists show the first three digits and last four digits of several phone numbers in the contact list of a cell phone.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 2
a. Compare and contrast the distribution of the last digit of each phone number to the distribution of the first digit of each phone number. Describe the shapes of the distributions.
b. Describe the shape of the distribution of the data in the table below. Compare it to the distributions in part(a).
Answer:

You can use dot plots and histograms to identify shapes of distributions.

Key Ideas
Symmetric and Skewed Distributions
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 3

EXAMPLE 1
Describing Shapes of Distributions

Describe the shape of each distribution.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 4

Try It
Question 1.
Describe the shape of the distribution.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 5
Answer:
BIM 6th Grade Chapter 10 Data Displays Answer Key img_4
A symmetric distribution has a graph in which the left side is a mirror image of the right side.
A skewed distribution has a graph in which a “tail” extends to the left and most data are on the right OR a “tail” extends to the right and most data are on the left.

EXAMPLE 2
Describing the Shape of a Distribution
The frequency table shows the ages of people watching a comedy in a theater. Display the data in a histogram. Then describe the shape of the distribution.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 6
Draw and label the axes. Then draw a bar to represent the frequency of each interval.
Most of the data are on the right, and the tail extends to the left.
So, the distribution is skewed left.
Answer:
For a distribution that is skewed right, the tail extends to the right and most of the data are on the left side of the graph.

Try It
Question 2.
The frequency table shows the ages of people watching a historical movie in a theater. Display the data in a histogram. Describe the shape of the distribution.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 7
Answer:

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 3.
WRITING
Explain in your own words what it means for a distribution to be (a) skewed left, (b) symmetric, and (c) skewed right.
Answer:

Question 4.
DESCRIBING A DISTRIBUTION
Display the data shown in a histogram. Describe the shape of the distribution.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 8
Answer:

Question 5.
WHICH ONE DOESN’T BELONG?
Which histogram does not belong with the other three? Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 9
Answer:

EXAMPLE 3
Modeling Real Life
The histogram shows the ages of people watching an animated movie in the same theater as in Example 2. Which movie has an older audience?
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 10
Understand the problem
You are given histograms that display the ages of people watching two movies. You are asked to determine which movie has an older audience.

Make a plan
Use the intervals and distributions of the data to determine which movie has an older audience.

Solve and check
The intervals in the histograms are the same. Most of the data for the animated movie are on the left, while most of the data for the comedy are on the right. This means that the people watching the comedy are generally older than the people watching the animated movie.

So, the comedy has an older audience.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 11
Check Reasonableness
The movies have similar attendance. However,only4 people watching the comedy are 17 or under. A total of 35 people watching the animated movie are 17 or under. So, it is reasonable to conclude that the comedy has an older audience.

Self-Assessment for Problem Solving
Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 6.
The frequency table shows the numbers of visitors each day to parks in Aurora and Grover in one month. Which park generally has more daily visitors? Justify your answer.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 12
Answer:

Question 7.
DIG DEEPER!
The frequency tables below show the ages of guests on two cruises. Can you make accurate comparisons of the ages of the guests? Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 13
Answer:

Shapes of Distributions Homework & Practice 10.1

Review & Refresh

Display the data in a histogram.
Question 1.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 14
Answer:
Big Ideas Math Answers Grade 6 Chapter 12 Data Displays img_1
On the vertical axis, place frequencies. Label this axis “Frequency”.
On the horizontal axis, place the lower value of each interval.
Draw a bar extending from the lower value of each interval to the lower value of the next interval.

Question 2.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 15
Answer:
BIM Grade 6 Answer Key Chapter 10 Data Displays img_2

On the vertical axis, place frequencies. Label this axis “Frequency”.
On the horizontal axis, place the lower value of each interval.
Draw a bar extending from the lower value of each interval to the lower value of the next interval.

Question 3.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 16
Answer:
Big Ideas Math Answers Grade 6 Chapter 12 Data Displays img_3

On the vertical axis, place frequencies. Label this axis “Frequency”.
On the horizontal axis, place the lower value of each interval.
Draw a bar extending from the lower value of each interval to the lower value of the next interval.

Write a unit rate for the situation.
Question 4.
$200 per 8 days
Answer:
200/8 = 25
Thus $25 per day.

Question 5.
60 kilometers for every 1.5 hours
Answer:
Your average speed is 60 km per 1.5 hours.
60/1.5 = 40 km/hr

Concepts, Skills, &Problem Solving

DESCRIBING SHAPES OF DISTRIBUTIONS Describe the shape of the distribution of the data in the table. (See Exploration 1, p. 471.)
Question 6.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 17
Answer:
Step 1:
Order the data
0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6

Question 7.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 18
Answer:
Step 1:
Order the data
12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16.

DESCRIBING SHAPES OF DISTRIBUTIONS

Describe the shape of the distribution.
Question 8.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 19
Answer: 25, 26, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30

Question 9.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 20
Answer:

15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 20, 20, 21

Question 10.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 21
Answer:

Question 11.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 22
Answer:

Question 12.
MODELING REAL LIFE
The frequency table shows the years of experience for the medical states in Jones County and Pine County. Display the data for each county in a histogram. Which county’s medical state has less experience? Explain.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 23
Answer:

Question 13.
REASONING
What is the shape of the distribution of the restaurant waiting times? Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 24
Answer:

Question 14.
LOGIC
Are all distributions either approximately symmetric or skewed? Explain. If not, give an example.
Answer:

Question 15.
REASONING
Can you use a stem-and-leaf plot to describe the shape of a distribution? Explain your reasoning.
Answer:

Question 16.
DIG DEEPER!
The table shows the donation amounts received by a charity in one day.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 25
a. Make a histogram of the data starting with the interval 0–14. Describe the shape of the distribution.
b. A company adds $5 to each donation. Make another histogram starting with the same interval as in part(a). Compare the shape of this distribution with the distribution in part(a). Explain any differences in the distributions.
Answer:

Question 17.
CRITICAL THINKING
Describe the shape of the distribution of each bar graph. Match the letters A, B, and C with the mean, the median, and the mode of each data set. Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays 10.3 26
Answer:

Lesson 10.4 Choosing Appropriate Measures

EXPLORATION 1
Using Shapes of Distributions
Work with a partner.
In Section 10.3 Exploration 1(a), you described the distribution of the first digits of the numbers at the right. In Exploration 1(b), you described the distribution of the data set below.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 1
What do you notice about the measures of center, measures of variation, and the shapes of the distributions? Explain.
b. Which measure of center best describes each data set? Explain your reasoning.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 2
c. which measures best describe the data. Which measure of variation best describes each data set? Explain your reasoning.
Answer:

You can use a measure of center and a measure of variation to describe the distribution of a data set.e shape of the distribution can help you choose which measures are the most appropriate to use.

Key Idea

Choosing Appropriate Measures
The mean absolute deviation (MAD) uses the mean in its calculation. So, when a data distribution is symmetric,
• use the mean to describe the center and
• use the MAD to describe the variation.

The interquartile range (IQR) uses quartiles in its calculation. So, when a data distribution is skewed,
• use the median to describe the center and
• use the IQR to describe the variation.

EXAMPLE 1
Choosing Appropriate Measures
The frequency table shows the number of states that border each state in the United States. What are the most appropriate measures to describe the center and the variation?
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 3
To see the distribution of the data, display the data in a histogram.
The left side of the graph is approximately a mirror image of the right side of the graph. The distribution is symmetric.
So, the mean and the mean absolute deviation are the most appropriate measures to describe the center and the variation.

Try It
Question 1.
The frequency table shows the gas mileages of several motorcycles made by a company. What are the most appropriate measures to describe the center and the variation?
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 4
Answer:
To see the distribution of the data, display the data in a histogram.
Big Ideas Math Grade 6 Chapter 10 Data Displays img_15

EXAMPLE 2
Describing a Data Set
The dot plot shows the average numbers of hours students in a class sleep each night. Describe the center and the variation of the data set.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 5
Most of the data values are on the right, clustered around 9, and the tail extends to the left. The distribution is skewed left, so the median and the interquartile range are the most appropriate measures to describe the center and the variation.
The median is 8.5 hours. The first quartile is 7.5, and the third quartile is 9. So, the interquartile range is 9 − 7.5 = 1.5 hours.
The data are centered around 8.5 hours. The middle half of the data varies by no more than 1.5 hours.

Try It
Question 2.
The dot plot shows the numbers of hours people spent at the gym last week. Describe the center and the variation of the data set.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 6
Answer:
Most of the data values are on the right, clustered around 6, and the tail extends to the left. The distribution is skewed left, so the median and the interquartile range are the most appropriate measures to describe the center and the variation.
The median is 5 hours. The first quartile is 2, and the third quartile is 4.
So, the interquartile range is 4 – 2 = 2 hours
The data are centered around 5 hours. The middle half of the data varies by no more than 2 hours.

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 3.
OPEN-ENDED
Construct a dot plot for which the mean is the most appropriate measure to describe the center of the distribution.
Answer:

CHOOSING APPROPRIATE MEASURES
Choose the most appropriate measures to describe the center and the variation. Explain your reasoning. Then find the measures you chose.
Question 4.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 7
Answer:
20, 28, 32, 32, 36, 36, 40, 40, 40, 40, 44, 44, 44, 48
Order your data set from lowest to highest values
Find the median. This is the second quartile Q2.
At Q2 split the ordered data set into two halves.
The lower quartile Q1 is the median of the lower half of the data.
Q1 = 32
The upper quartile Q3 is the median of the upper half of the data.
Q3 = 44
Median is the average of the data values.
So, the median, Q2 is 40.
Interquartile Range = Q3 – Q1
IQR = 44 – 32
IQR = 12

Question 5.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 8
Answer:
8, 10, 10, 12, 12, 12, 14, 14, 14, 14, 16, 16, 16, 18, 18, 20
8, 10, 12, 14, 16, 18, 20
Order your data set from lowest to highest values
Find the median. This is the second quartile Q2.
At Q2 split the ordered data set into two halves.
The lower quartile Q1 is the median of the lower half of the data.
Q1 = 12
The upper quartile Q3 is the median of the upper half of the data.
Q3 = 16
Median is the average of the data values.
So, the median, Q2 is 14
Interquartile Range = Q3 – Q1
IQR = 16 – 12
IQR = 4

Question 6.
WRITING
Explain why the most appropriate measures to describe the center and the variation of a data set are determined by the shape of the distribution.
Answer:
You can use a measure of center and a measure of variation to describe the distribution of a data set. The shape of the distribution can help you choose which measures are the most appropriate to use. The dot plot shows the average number of hours students in a class sleep each night.

EXAMPLE 3
Modeling Real Life
Two baskets each have16 envelopes with money inside, as shown in the tables. How much does a typical envelope in each basket contain? Why might a person want to pick from Basket B instead of Basket A?
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 9
In each graph, the left side is a mirror image of the right side. Because both distributions are symmetric, the mean and the mean absolute deviation are the most appropriate measures to describe the center and the variation.
The mean of each data set is \(\frac{800}{16}\) = $50. The MAD of Basket A is \(\frac{320}{16}\) = $20, and the MAD of Basket B is \(\frac{120}{16}\) = $7.50. So, Basket A has more variability.

A typical envelope in each basket contains about $50. A person may choose from Basket B instead of Basket A because there is less variability. This means it is more likely to get an amount near $50 by choosing an envelope from Basket B than by choosing an envelope from Basket A.
Answer:

Self-Assessment for Problem Solving

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 7.
Why might a person want to pick from Basket A instead of Basket B in Example 3? Explain your reasoning.
Answer:

Question 8.
In a video game, two rooms each have 12 treasure chests containing gold coins. The tables show the numbers of coins in each chest. You pick one chest and are rewarded with the coins inside. From which room would you choose? Explain your reasoning.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 10
Answer:

Question 9.
Create a dot plot of the numbers of pets that students in your class own. Describe the center and the variation of the data set.
Answer:

Choosing Appropriate Measures Homework & Practice 10.4

Review & Refresh

Describe the shape of the distribution.
Question 1.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 11
Answer:
Order the data
5, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10
The shape of the distribution for the above dot plot is
Big-Ideas-Math-Solutions-Grade-6-Chapter-10-Data-Displays-10.4-11

Question 2.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 12
Answer:

Find the median, first quartile, third quartile, and interquartile range of the data.
Question 3.
68, 74, 67, 72, 63, 70, 78, 64, 76
Answer:
Order the data
63, 64, 67, 68, 70, 72, 74, 76, 78
The median is nothing but the average value of the data.
70 is the average of the data values.
Order your data set from lowest to highest values
Find the median. This is the second quartile Q2.
Thus the second quartile Q2 is 70.
At Q2 split the ordered data set into two halves.
The lower quartile Q1 is the median of the lower half of the data.
Thus Q1 is 65.5
The upper quartile Q3 is the median of the upper half of the data.
Q3 is 75
Interquartile Range IQR = 9.5
If the size of the data set is odd, do not include the median when finding the first and third quartiles.
If the size of the data set is even, the median is the average of the middle 2 values in the data set. Add those 2 values, and then divide by 2. The median splits the data set into lower and upper halves and is the value of the second quartile Q2.

Question 4.
39, 48, 33, 24, 30, 44, 36, 41, 28, 53
Answer:
Order the data
24, 28, 30, 33, 36, 39, 41, 44, 48, 53
If the size of the data set is even, the median is the average of the middle 2 values in the data set. Add those 2 values, and then divide by 2. The median splits the data set into lower and upper halves and is the value of the second quartile Q2.
Median is (36+39)/2 = 37.5
Order your data set from lowest to highest values
Find the median. This is the second quartile Q2.
Thus the second quartile Q2 is 37.5
At Q2 split the ordered data set into two halves.
The lower quartile Q1 is the median of the lower half of the data.
Thus Q1 is 30
The upper quartile Q3 is the median of the upper half of the data.
Q3 is 44
Interquartile Range IQR = 14
If the size of the data set is odd, do not include the median when finding the first and third quartiles.

Divide. Write the answer in simplest form.
Question 5.
4\(\frac{2}{5}\) ÷ 2
Answer: 2 \(\frac{1}{5}\)

Explanation:
Convert any mixed numbers to fractions.
4\(\frac{2}{5}\) = \(\frac{22}{5}\)
\(\frac{22}{5}\) × \(\frac{1}{2}\) = \(\frac{22}{10}\)
Now convert from improper fraction to the mixed fraction.
\(\frac{22}{10}\) = 2 \(\frac{1}{5}\)

Question 6.
5\(\frac{1}{8}\) ÷ \(\frac{7}{8}\)
Answer: 5 \(\frac{6}{7}\)

Explanation:
Convert any mixed numbers to fractions.
5\(\frac{1}{8}\) = \(\frac{41}{8}\)
\(\frac{41}{8}\) ÷ \(\frac{7}{8}\)
\(\frac{41}{8}\) × \(\frac{8}{7}\) = \(\frac{328}{56}\)
Now convert from improper fraction to the mixed fraction.
\(\frac{328}{56}\) = 5 \(\frac{6}{7}\)

Question 7.
2\(\frac{3}{7}\) ÷ 1\(\frac{1}{7}\)
Answer: 2 \(\frac{1}{8}\)

Explanation:
Convert any mixed numbers to fractions.
2\(\frac{3}{7}\) = \(\frac{17}{7}\)
1\(\frac{1}{7}\) = \(\frac{8}{7}\)
\(\frac{17}{7}\) ÷ \(\frac{8}{7}\) = \(\frac{119}{56}\)
Simplify the fraction
\(\frac{119}{56}\) = 2 \(\frac{1}{8}\)

Question 8.
\(\frac{4}{5}\) ÷ 7\(\frac{1}{2}\)
Answer: \(\frac{8}{75}\)

Explanation:
Convert any mixed numbers to fractions.
7\(\frac{1}{2}\) = \(\frac{15}{2}\)
\(\frac{4}{5}\) ÷ \(\frac{15}{2}\) = \(\frac{8}{75}\)

Concepts, Skills, & Problem Solving

USING SHAPES OF DISTRIBUTIONS
Find the mean and the median of the data set. Which measure of center best describes the data set? Explain your reasoning. (See Exploration 1, p. 477.)
Question 9.
9, 3, 7, 7, 9, 2, 8, 9, 6, 7, 8, 9
Answer:

Question 10.
24, 25, 27, 27, 23, 29, 26, 26, 26, 25, 28
Answer:

CHOOSING APPROPRIATE MEASURES
Choose the most appropriate measures to describe the center and the variation.
Question 11.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 13
Answer:

Question 12.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 14
Answer:

Question 13.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 15
Answer:

Question 14.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 16
Answer:

Question 15.
DESCRIBING DATA SETS
Describe the centers and the variations of the data sets in Exercises 11 and 12.
Answer:

Question 16.
MODELING REAL LIFE
The frequency table shows the numbers of eggs laid by several octopi. What are the most appropriate measures to describe the center and the variation? Explain your reasoning.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 17
Answer:

Question 17.
MODELING REAL LIFE
The dot plot shows the vertical jump heights (in inches) of several professional athletes. Describe the center and the variation of the data set.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 18
Answer:

Question 18.
OPEN-ENDED
Describe a real-life situation where the median and the interquartile range are likely the best measures of center and variation to describe the data. Explain your reasoning.
Answer:

Question 19.
PROBLEM SOLVING
You play a board game in which you draw from one of two piles of cards. Each card has a number that says how many spaces you will move your piece forward on the game board. The tables show the numbers on the cards in each pile. From which pile would you choose? Explain your reasoning.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 19
Answer:

Question 20.
DIG DEEPER!
The frequency table shows the numbers of words that several students can form in 1 minute using the letters P, S, E, D, A. What are the most appropriate measures to describe the center and variation? Can you find the exact values of the measures of center and variation for the data? Explain.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 20
Answer:

Question 21.
REASONING
A bag contains 20 vouchers that can be redeemed for different numbers of tokens at an arcade, as shown in the table.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays 10.4 21
a. Find the most appropriate measure to describe the center of the data set.
b. You randomly select a voucher from the bag. How many tokens are you most likely to receive? Explain.
c. Are your answers in parts (a) and (b) the same? Explain why or why not.
Answer:

Lesson 10.5 Box-and-Whisker Plots

EXPLORATION 1
Drawing a Box-and-Whisker Plot
Work with a partner. Each student in a sixth-grade class is asked to choose a number from 1 to 20. The results are shown below.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 1
a. The box-and-whisker plot below represents the data set. Which part represents the box? the whiskers? Explain.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 2
b. What does each of the five plotted points represent?
c. In your own words, describe what a box-and-whisker plot is and what it tells you about a data set.
d. Conduct a survey in your class. Have each student write a number from 1 to 20 on a piece of paper. Collect all of the data and draw a box-and-whisker plot that represents the data. Compare the data with the box-and-whisker plot in part(a).
Answer:

Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 3.1

Key Idea
Box-and-Whisker Plot
A box-and-whisker plot represents a data set along a number line by using the least value, the greatest value, and the quartiles of the data. A box-and-whisker plot shows the variability of a data set.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 3
The five numbers that make up the box-and-whisker plot are called the five-number summary of the data set.

EXAMPLE 1
Making a Box-and-Whisker Plot
Make a box-and-whisker plot for the ages(in years) of the spider monkeys at a zoo.
15, 20, 14, 38, 30, 36, 30, 30, 27, 26, 33, 35
Step 1: Order the data. Find the quartiles.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 4
Step 2: Draw a number line that includes the least and greatest values. Graph points above the number line that represent the five-number summary.
Step 3: Draw a box using the quartiles. Draw a line through the median. Draw whiskers from the box to the least and the greatest values.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 5
Answer:

Try It
Question 1.
A group of friends spent 1, 0, 2, 3, 4, 3, 6, 1, 0, 1, 2, and 2 hours online last night.Make a box-and-whisker plot for the data.
Answer:

The figure shows how data are distributed in a box-and-whisker plot.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 6

EXAMPLE 2
Analyzing a Box-and-Whisker Plot
The box-and-whisker plot shows the body mass index (BMI) of a sixth-grade class.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 7
a. What fraction of the students have a BMI of at least 22?
The right whisker represents students who have a BMI of at least 22.
So, about \(\frac{1}{4}\) of the students have a BMI of at least 22.
b. Are the data more spread out below the first quartile or above the third quartile? Explain.
The right whisker is longer than the left whisker.
So, the data are more spread out above the third quartile than below the first quartile.
c. Find and interpret the interquartile range of the data.
interquartile range = third quartile − first quartile
= 22 – 19 = 3
So, the middle half of the students’ BMIsvaries by no more than 3.

Try It
Question 2.
The box-and-whisker plot shows the heights of the roller coasters at an amusement park.
(a) What fraction of the roller coasters are between 120 feet tall and 220 feet tall?
(b) Are the data more spread out below or above the median? Explain.
(c) Find and interpret the interquartile range of the data.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 8
Answer:

A box-and-whisker plot also shows the shape of a distribution.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 9

EXAMPLE 3
Identifying Shapes of Distributions
The double box-and-whisker plot represents the life spans of crocodiles and alligators at a zoo. Identify the shape of the distribution of the lifespans of alligators.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 10
For alligator life spans, the whisker lengths are equal. The median is in the middle of the box. The left side of the box-and-whisker plot is a mirror image of the right side of the box-and-whisker plot.
So, the distribution is symmetric.
Answer:

Try It
Question 3.
Identify the shape of the distribution of the life spans of crocodiles.
Answer:

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 4.
VOCABULARY
Explain how to find the five-number summary of a data set.
Answer:

MAKING A BOX-AND-WHISKER PLOT
Make a box-and-whisker plot for the data. Identify the shape of the distribution.
Question 5.
Ticket prices (dollars): 39, 42, 40, 47, 38, 39, 44, 55, 44, 58, 45
Answer:

Question 6.
Number of sit-ups: 20, 20, 23, 25, 25, 26, 27, 29, 30, 30, 32, 34, 37, 38
Answer:

Question 7.
NUMBER SENSE
In a box-and-whisker plot, what fraction of the data is greater than the first quartile?
Answer:

EXAMPLE 4
Modeling Real Life
The double box-and-whisker plot represents the prices of snowboards at two stores.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 11
a. Which store’s prices are more spread out? Explain. Both boxes appear to be the same length. So, the interquartile range of each data set is equal. The range of the prices in Store B, however, is greater than the range of the prices in Store A.
So, the prices in Store B are more spread out.
b. Which store’s prices are generally higher? Explain.
For Store A,the distribution is symmetric with about one-half of the prices above $300.
For Store B, the distribution is skewed right with about three-fourths of the prices above $300.
So, the prices in Store B are generally higher.
Answer:

Self-Assessment for Problem Solving

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 8.
The tables at the left show the test scores of two sixth-grade achievement tests. The same group of students took both tests. The students took one test in the fall and the other in the spring.
a. Analyze each distribution. Then compare and contrast the test results.
b. Which table likely represents the results of which test? Explain your reasoning.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 12
Answer:

Question 9.
Make a box-and-whisker plot that represents the heights of the boys in your class. Then make a box-and-whisker plot that represents the heights of the girls in your class. Compare and contrast the distributions.
Answer:

Box-and-Whisker Plots Homework & Practice 10.5

Review & Refresh

Choose the most appropriate measures to describe the center and the variation.
Question 1.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 13
Answer:

Question 2.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 14
Answer:

Copy and complete the statement using < or >.
Question 3.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 15
Answer: –\(\frac{2}{3}\) > –\(\frac{3}{4}\)

Explanation:
Compare fractions to find which fraction is larger and which is smaller.
The least common denominator (LCD) is 12
Rewriting as equivalent fractions with the LCD:
\(\frac{2}{3}\) = \(\frac{8}{12}\)
\(\frac{3}{4}\) = \(\frac{9}{12}\)
Now compare the fractions
–\(\frac{8}{12}\) >-\(\frac{9}{12}\)
Thus we can say that –\(\frac{2}{3}\) > –\(\frac{3}{4}\)

Question 4.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 16
Answer: -2 \(\frac{1}{5}\) < -2 \(\frac{1}{6}\)

Explanation:
Compare fractions to find which fraction is larger and which is smaller.
Rewriting these inputs as fractions:
2 \(\frac{1}{5}\) = \(\frac{11}{5}\)
2 \(\frac{1}{6}\) = \(\frac{13}{6}\)
The LCM is 30
Rewriting as equivalent fractions with the LCD
\(\frac{11}{5}\) = \(\frac{66}{30}\)
\(\frac{13}{6}\) = \(\frac{65}{30}\)
– \(\frac{66}{30}\) < – \(\frac{65}{30}\)
-2 \(\frac{1}{5}\) < -2 \(\frac{1}{6}\)

Question 5.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 17
Answer: -5.3 > -5.5

Explanation:
Compare fractions to find which fraction is larger and which is smaller.
The smallest number with the negative sign will be the greater number
Thus -5.3 > -5.5

Factor the expression using the GCF.
Question 6.
42 + 14
Answer

Question 7.
12x – 18
Answer:

Question 8.
28n + 20
Answer:

Question 9.
60g – 25h
Answer:

Concepts, Skills, & Problem Solving

COMPARING DATA Compare the data in the box-and-whisker plots. (See Exploration 1, p. 483.)
Question 10.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 18
Answer:

Question 11.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 19
Answer:

MAKING A BOX-AND-WHISKER PLOT
Make a box-and-whisker plot for the data.
Question 12.
Ages of teachers (in years): 30, 62, 26, 35, 45, 22, 49, 32, 28, 50, 42, 35
Answer:

Question 13.
Quiz scores: 8, 12, 9, 10, 12, 8, 5, 9, 7, 10, 8, 9, 11
Answer:

Question 14.
Donations (in dollars): 10, 30, 5, 15, 50, 25, 5, 20, 15, 35, 10, 30, 20
Answer:

Question 15.
Science test scores: 85, 76, 99, 84, 92, 95, 68, 100, 93, 88, 87, 85
Answer:

Question 16.
Shoe sizes: 12, 8.5, 9, 10, 9, 11, 11.5, 9, 9, 10, 10, 10.5, 8
Answer:

Question 17.
Ski lengths (in centimeters): 180, 175, 205, 160, 210, 175, 190, 205, 190, 160, 165, 195
Answer:

Question 18.
YOU BE THE TEACHER
Your friend makes a box-and-whisker plot for the data shown. Is your friend correct? Explain your reasoning.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 20
2, 6, 4, 3, 7, 4, 6, 9, 6, 8, 5, 7
Answer:

Question 19.
MODELING REAL LIFE
The numbers of days 12 friends went camping during the summer are 6, 2, 0, 10, 3, 6, 6, 4, 12, 0, 6, and 2. Make a box-and-whisker plot for the data. What is the range of the data?
Answer:

Question 20.
ANALYZING A BOX-AND-WHISKER PLOT
The box-and-whisker plot represents the numbers of gallons of water needed to fill different types of dunk tanks offered by a company.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 21
a. What fraction of the dunk tanks requires at least 500 gallons of water?
b. Are the data more spread out below the first quartile or above the third quartile? Explain.
c. Find and interpret the interquartile range of the data.
Answer:

Question 21.
MODELING REAL LIFE
The box-and-whisker plot represents the heights (in meters) of the tallest buildings in Chicago.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 22
a. What percent of the buildings are no taller than 345 meters?
b. Is there more variability in the heights above 345 meters or below 260.5 meters? Explain.
c. Find and interpret the interquartile range of the data.
Answer:

Question 22.
CRITICAL THINKING
The numbers of spots on several frogs in a jungle are shown in the dot plot.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 23
a. Make a box-and-whisker plot for the data.
b. Compare the dot plot and the box-and-whisker plot. Describe the advantages and disadvantages of each data display.
Answer:

SHAPES OF BOX-AND-WHISKER PLOTS
Identify the shape of the distribution. Explain.
Question 23.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 24
Answer:

Question 24.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 25
Answer:

Question 25.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 26
Answer:

Question 26.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 27
Answer:

Question 27.
MODELING REAL LIFE
The double box-and-whisker plot represents the start times of recess for classes at two schools.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 28
a. Identify the shape of each distribution.
b. Which school’s start times for recess are more spread out? Explain.
c. You randomly pick one class from each school. Which class is more likely to have recess before lunch? Explain.
Answer:

MAKING A BOX-AND-WHISKER PLOT
Make a box-and-whisker plot for the data.
Question 28.
Temperatures (in °C): 15, 11, 14, 10, 19, 10, 2, 15, 12, 14, 9, 20, 17, 5
Answer:

Question 29.
Checking account balances (in dollars): 30, 0, 50, 20, 90, −15, 40, 100, 45, −20, 70, 0
Answer:

Question 30.
REASONING
The data set in Exercise 28 has an outlier. Describe how removing the outlier affects the box-and-whisker plot.
Answer:

Question 31.
OPEN-ENDED
Write a data set with 12 values that has a symmetric box-and-whisker plot.
Answer:

Question 32.
CRITICAL THINKING
When does a box-and-whisker plot not have one or both whiskers?
Answer: A simpler formulation is this: no whisker will be visible if the lower quartile is equal to the minimum, or if the upper quartile is equal to the maximum.

Question 33.
STRUCTURE Draw a histogram that could represent the distribution shown in Exercise 25.
Answer:

Question 34
DIG DEEPER!
The double box-and-whisker plot represents the goals scored per game by two lacrosse teams during a 16-game season.
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays 10.5 29
a. Which team is more consistent? Explain.
b. Team 1 played Team 2 once during the season. Which team do you think won? Explain.
c. Can you determine the number of games in which Team 2 scored 10 goals or less? Explain your reasoning.
Answer:

Question 35.
CHOOSE TOOLS
A market research company wants to summarize the variability of the SAT scores of graduating seniors in the United States. Should the company use a stem-and-leaf plot, a histogram, or a box-and-whisker plot? Explain.
Answer:

Data Displays Connecting Concepts

Using the Problem-Solving Plan
1. The locations of pitches in an at-bat are shown in the coordinate plane, where the coordinates are measured in inches. Describe the location of a typical pitch in the at-bat.
Understand the problem
You know the locations of the pitches. You are asked to find the location of a typical pitch in the at-bat.

Make a plan
First, use the coordinates of the pitches to create two data sets, one for the x-coordinates of the pitches and one for the y-coordinates of the pitches. Next, make a box-and-whisker plot for each data set. Then use the most appropriate measure of center for each data set to find the location of a typical pitch.

Solve and check
Use the plan to solve the problem. Then check your solution.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays cc 1

2. A set of 20 data values is described below. Sketch a histogram that could represent the data set. Explain.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays cc 2
• least value: 10
• first quartile: 25
• mean: 29
• third quartile: 34
• greatest value: 48
• MAD: 7

3. The chart shows the dimensions (in inches) of several flat-rate shipping boxes. Each box is in the shape of a rectangular prism. Describe the distribution of the volumes of the boxes. Then find the most appropriate measures to describe the center and the variation of the volumes.

Performance Task
Classifying Dog Breeds by Size
At the beginning of this chapter, you watched a STEAM Video called “Choosing a Dog.” You are now ready to complete the performance task related to this video, available at BigIdeasMath.com. Be sure to use the problem-solving plan as you work through the performance task.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays cc 3

Data Displays Chapter Review

Review Vocabulary
Write the definition and give an example of each vocabulary term.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays cr 1

Graphic Organizers
You can use an Information Frame to help you organize and remember concepts. Here is an example of an Information Frame for the vocabulary term histogram.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays cr 2
Choose and complete a graphic organizer to help you study the concept.
1. stem-and-leaf plot
2. frequency table
3. shapes of distributions
4. box-and-whisker plot
Answer:

Chapter Self-Assessment
As you complete the exercises, use the scale below to rate your understanding of the success criteria in your journal.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays cr 3

10.1 Stem-and-Leaf Plots
Learning Target: Display and interpret data in stem-and-leaf plots.

Make a stem-and-leaf plot of the data.
Question 1.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 1
Answer:
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays img_16

Question 2.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 2
Answer:
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays img_17

Question 3.
The stem-and-leaf plot shows the weights (in pounds) of yellowfin tuna caught during a fishing contest.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 3
a. How many tuna weigh less than 90 pounds?
b. Find the mean, median, mode, range, and interquartile range of the data.
c. How are the data distributed?
Answer:

Question 4.
The stem-and-leaf plot shows the body mass index (BMI) for adults at a recreation center. Use the data to answer the question, “What is the typical BMI for an adult at the recreation center?” Explain.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 4
Answer:

Question 5.
Write a statistical question that can be answered using the stem-and-leaf plot.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 5
Answer:

10.2 Histograms (pp. 463-470)
Learning Target: Display and interpret data in histograms.

Display the data in a histogram.
Question 6.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 6
Answer:

Question 7.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 7
Answer:
Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays img_19

Question 8.
The histogram shows the number of crafts each member of a craft club made for a fundraiser.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 8
a. Which interval contains the most data values?
b. Frequency How many members made at least 6 crafts?
c. Can you use the histogram to determine the total number of crafts made? Explain.
Answer:

10.3 Shapes of Distributions (pp. 471–476)
Learning Target: Describe and compare shapes of distributions.

Question 9.
Describe the shape of the distribution.
Answer: The shape of a distribution is described by its number of peaks and by its possession of symmetry, its tendency to skew, or its uniformity.

Question 10.
The frequency table shows the math test scores for the same class of students as Exercise 9. Display the data in a histogram. Which test has higher scores?
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 10
Answer:

Question 11.
The table shows the numbers of neutrons for several elements in the nonmetal group of the periodic table. Make a histogram of the data starting with the interval 0–9. Describe the shape of the distribution.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 11
Answer:

10.4 Choosing Appropriate Measures (pp. 477–482)
Learning Target: Use the shape of the distribution of a data set to determine which measures of center and variation best describe the data.

Choose the most appropriate measures to describe the center and the variation. Students’ Heights
Question 12.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 12
Answer:

Question 13.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 13
Answer:

Question 14.
Describe the center and the variation of the data set in Exercise 13.
Answer:

10.5 Box-and-Whisker Plots (pp. 483–490)
Learning Target: Display and interpret data in box-and-whisker plots.

Make a box-and-whisker plot for the data.
Question 15.
Ages of volunteers at a hospital:
14, 17, 20, 16, 17, 14, 21, 18
Answer:

Question 16.
Masses (in kilograms) of lions:
120, 200, 180, 150, 200, 200, 230, 160
Answer:

Question 17.
The box-and-whisker plot represents the lengths (in minutes) of movies being shown at a theater.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 17
a. What percent of the movies are no longer than 120 minutes?
b. Is there more variability in the movie lengths longer than 130 minutes or shorter than 110 minutes? Explain.
c. Find and interpret the interquartile range of the data.
Answer:

Question 18.
The double box-and-whisker plot represents the heights of students in two math classes.
Big Ideas Math Answers 6th Grade Chapter 10 Data Displays crr 18
a. Identify the shape of each distribution.Height(cm)
b.Which class has heights that are more spread out? Explain.
c.You randomly pick one student from each class. Which student is more likely to be taller than 170 centimeters? Explain.
Answer:

Data Displays Practice Test

Make a stem-and-leaf plot of the data.
Question 1.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pt 1
Answer:
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays img_8

Question 2.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pt 2
Answer:

Big Ideas Math Answers Grade 6 Chapter 10 Data Displays img_9

Question 3.
Find the mean, median, mode, range, and interquartile range of the data.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pt 3
Answer:
Given data 35, 38, 40, 41, 48, 50, 54, 54, 54, 55, 59, 60
Mean:
The mean refers to an intermediate value between a discrete set of numbers, namely, the sum of all values in the data set, divided by the total number of values.
x̄ = (35+38+40+41+48+50+54+54+54+55+59+60)/12
x̄ = 49
Thus mean of the given data is 49.
Median:
Given data 35, 38, 40, 41, 48, 50, 54, 54, 54, 55, 59, 60
In the case where the total number of values in a data sample is odd, the median is simply the number in the middle of the list of all values. When the data sample contains an even number of values, the median is the mean of the two middle values.
Median = (50+54)/2 = 104/2 = 52
Thus the median of the given data is 52.
Mode:
The mode is the value in a data set that has the highest number of recurrences.
35, 38, 40, 41, 48, 50, 54, 54, 54, 55, 59, 60
Mode = 54 (repeated 3 times)

Question 4.
Display the data in a histogram. How many people watched less than 20 hours of television per week?
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pt 4
Answer:
BIM Grade 6 Chapter 10 Data Displays Answer Key img_10
By seeing the above histogram we can find the number of people who watched less than 20 hours of television per week.
14 + 16 = 30
Therefore 30 people watched less than 20 hours per week.

Question 5.
The dot plot shows the numbers of glasses of water Water Consumed that the students in a class drink in one day.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pt 5
a. Describe the shape of the distribution.
b. Choose the most appropriate measures to describe the center and the variation. Find the measures you chose.
Answer:

Question 6.
Make a box-and-whisker plot for the lengths (in inches) of fish in a pond: 12, 13, 7, 8, 14, 6, 13, 10.
Answer:

Question 7.
The double box-and-whisker plot compares the battery lives (in hours) of two brands of cell phones.
Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pt 7
a. What is the range of the upper 75% of battery life for each brand of cell phone?
b. Which brand of cell phone typically has a longer battery life? Explain.
c. In the box-and-whisker plot, there are 190 cell phones of Brand A that have at most 10.5 hours of battery life. About how many cell phones are represented in the box-and-whisker plot for Brand A?
Answer:

Data Displays Cumulative Practice

Question 1.
Research scientists are measuring the numbers of days lettuce seeds take to germinate. In a study, 500 seeds were planted. Of these,473 seeds germinated. The box-and-whisker plot summarizes the numbers of days it took the seeds to germinate. What can you conclude from the box-and-whisker plot?
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays cp 1
A. The median number of days for the seeds to germinate is 12.
B. 50% of the seeds took more than 8 days to germinate.
C. 50% of the seeds took less than 5 days to germinate.
D. The median number of days for the seeds to germinate was 6.
Answer:

Question 2.
Find the interquartile range of the data.
15 7 5 8 9 20 12 7 11 7 15
F. 8
G. 11
H. 12
I. 20
Answer: 8

Question 3.
There are seven different integers in a set. When they are listed from least to greatest, the middle integer is −1. Which statement below must be true?
A. There are three negative integers in the set.
B. There are three positive integers in the set.
C. There are four negative integers in the set.
D. The integer in the set after −1 is positive.
Answer:

Question 4.
What is the mean number of seats?
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays cp 4
F. 2.4 seats
G. 5 seats
H. 6.5 seats
I. 7 seats5.
Answer:

Question 5.
On Wednesday, a town received 17 millimeters of rain. This was x millimeters more rain than the town received on Tuesday. Which expression represents the amount of rain, in millimeters, the town received on Tuesday?
A. 17x
B. 17 – x-c
C. x + 17
D. x – 17
Answer:

Question 6.
One of the leaves is missing in the stem-and-leaf plot.
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays cp 6
The median of the data set represented by the stem-and-leaf plot is 38. What is the value of the missing leaf?
Answer:

Question 7.
Which property is demonstrated by the equation?
723 + (y + 277) = 723 + (277 + y)
F. Associative Property of Addition
G. Commutative Property of Addition
H. Distributive Property
I. Addition Property of Zero
Answer: Associative Property of Addition

Explanation:
Associative property of addition: Changing the grouping of addends does not change the sum
Thus the correct answer is option F.

Question 8.
A student took five tests and had a mean score of 92. Her scores on the first 4 tests were 90, 96, 86, and 92. What was her score on the fifth test?
A. 92
B. 93
C. 96
D. 98
Answer: 86

Explanation:
Given that,
A student took five tests and had a mean score of 92.
Her scores on the first 4 tests were 90, 96, 86, and 92.
(90+96+86+92+s)/5=90
(364+s)/5=90
364+s=450
s=86
So she scored an 86 on the fifth test.

Question 9.
At the end of the school year, your teacher counted the number of absences for each student. The results are shown in the histogram. How many students had fewer than 10 absences?
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays cp 9
Answer:

Question 10.
The ages of the 16 members of a camera club are listed below.
40, 22, 24, 58, 30, 31, 37, 25, 62, 40, 39, 37, 28, 28, 51, 44
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays cp 10.1
Big Ideas Math Solutions Grade 6 Chapter 10 Data Displays cp 10
Part A Order the ages from youngest to oldest.
Part B Find the median of the ages.
Part C Make a box-and-whisker plot for the ages.
Answer:

Conclusion:

I wish the information prevailed in Big Ideas Math Answer Key Grade 6 Chapter 10 Data Displays is beneficial for all. Tap the links and kickstart your preparation. Share the Big Ideas Math Answers Grade 6 Chapter 10 Data Displays pdf to your friends and help them to overcome their difficulties. Stay tuned to our site to get the solutions of all Big Ideas Math Answers Grade 6 Chapters.

Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures

Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures

Students who are looking for Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pdf can get them on this page. In order to help you guys, we have prepared the Big Ideas Math Answers Grade 6 in pdf format to prepare in offline mode. Hit the links attached in the below section to know the topics covered in the Statistical Measures chapter. Hence Download Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pdf for free and start practicing the problems now.

Big Ideas Math Book 6th Grade Answer Key Chapter 9 Statistical Measures

Know the concept of the statistical measures with the help of our Big Ideas Math Grade 6 Solution Key Chapter 9. This BIM 6th Grade Chapter 9 Statistical Measures download pdf will help the students to overcome the difficulties in maths and also to improve their performance in the exams. You can score good marks in exams by referring to our Big Ideas Math Book 6th Grade Answer Key Chapter 9 Statistical Measures.

Performance Task

Lesson: 1 Introduction to Statistics

Lesson: 1 Introduction to Statistics

Lesson: 2 Mean

Lesson: 3 Measures of Center

Lesson: 4 Measures of Variation

Lesson: 5 Mean Absolute Deviation

Lesson: 5 Mean Absolute Deviation

Chapter 9: Statistical Measures

Statistical Measures STEAM Video/Performance Task

STEAM Video
Daylight in the Big City
Averages can be used to compare different sets of data. How can you use averages to compare the amounts of day light in different cities? Can you think of any other real-life situations where averages are useful?
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 1
Watch the STEAM Video “Daylight in the Big City.” Then answer the following questions.
1. Why do different cities have different amounts of daylight throughout the year?

Answer:
Our amount of daylight hours depends on our latitude and how Earth orbits the sun. This causes a seasonal variation in the intensity of sunlight reaching the surface and the number of hours of daylight. The variation in intensity results because the angle at which the sun’s rays hit the Earth changes with the time of year.

2. Robert’s table includes the difference of the greatest amount of daylight and the least amount of daylight in Lagos, Nigeria, and in Moscow, Russia.
Lagos: 44 minutes
Moscow:633 minutes
Use these values to make a prediction about the difference between the greatest amount of daylight and the least amount of daylight in a city in Alaska.

Answer:
The least daylight in Alaska is 1092 minutes in Juneau
The greatest daylight in Alaska is 1320 minutes in Fairbanks

Performance Task
Which Measure of Center Is Best: Mean, Median, or Mode?
After completing this chapter, you will be able to use the concepts you learned to answer the questions in the STEAM Video Performance Task. You will be given the greatest and least amounts of daylight in the 15 cities in the United States with the greatest populations.
s
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 3
You will determine which measure of center best represents the data. Why might someone be interested in the amounts of daylight throughout the year in a city?

Statistical Measures Getting Ready for Chapter 9

Chapter Exploration
Work with a partner. Write the number of letters in each of your first names on the board.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 4
1. Write all of the numbers on a piece of paper. The collection of numbers is called data.
2. Talk with your partner about how you can organize the data. What conclusions can you make about the numbers of letters in the first names of the students in your class?
3. Draw a grid like the one shown below. Then use the grid to draw a graph of the data.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 5

Answer:
3,6,9,5,6,7,6,5,5,8,6,8,5,6,4,4,7,6,3,5,6,5,5

4. THE CENTER OF THE DATA Use the graph of the data in Exercise 3 to answer the following.
a. Is there one number that occurs more than any of the other numbers? If so, write a sentence that interprets this number in the context of your class.
b. Complete the sentence, “In my class, the average number of letters in a student’s first name is __________.” Justify your reasoning.
c. Organize your data using a different type of graph. Describe the advantages or disadvantages of this graph.

Answer:
a. Yes, 6, 5, 8 are more than other numbers given in the data.
b. “In my class, the average number of letters in a student’s first name is 5 and 6.

Vocabulary
The following vocabulary terms are defined in this chapter. Think about what each term might mean and record your thoughts.
statistical question
measure of center
measure of variation
mean
median
range

Lesson 9.1 Introduction to Statistics

EXPLORATION 1

Using Data to Answer a Question
Work with a partner.
a. Use your pulse to find your heart rate in beats per minute.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 1
b. Collect the recorded heart rates of the students in your class, including yourself. How spread out are the data? Use a diagram to justify your answer.
c. REASONING How would you answer the following question by using only one value? Explain your reasoning.
“What is the heart rate of a sixth-grade student?”
Answer: Your pulse is measured by counting the number of times your heart beats in one minute. For example, if your heart contracts 72 times in one minute, your pulse would be 72 beats per minute (BPM).

EXPLORATION 2

Identifying Types of Questions
Work with a partner.
a. Answer each question on your own. Then compare your answers with your partner’s answers. For which questions should your answers be the same? For which questions might your answers be different?
1. How many states are in the United States?
Answer: There are 50 states in the United States.

2. How much does a movie ticket cost? Math Practice
Answer: $9.16
3. What color fur do bears have? Build Arguments How can comparing your answers help you support your conjecture?
Answer: The color white becomes visible to our eyes when an object reflects back all.

4. How tall is your math teacher?
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 2
b. CONJECTURE
Some of the questions in part(a) are considered statistical questions. Which ones are they? Explain.
Answer: 5.10 inches

Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 3

Statistics is the science of collecting, organizing, analyzing, and interpreting data. A statistical question is one for which you do not expect to get a single answer. Instead, you expect a variety of answers, and you are interested in the distribution and tendency of those answers.

Try It
Determine whether the question is a statistical question. Explain.
Question 1.
What types of cell phones do students have in your class?
Answer:
Smartphones, Cell phones give students access to tools and apps that can help them complete and stay on top of their class work. These tools can also teach students to develop better study habits, like time management and organization skills.

Question 2.
How many desks are in your classroom?
Answer: 25

Question 3.
How much do virtual-reality headsets cost?
Answer: $499

Question 4.
How many minutes are in your lunch period?
Answer: 45 minutes

A dot plot uses a number line to show the number of times each value in a data set occurs. Dot plots show the spread and the distribution of a data set.

Question 5.
Repeat parts (a)–(c)using the dot plot below that shows the times of students in a 100-meter race.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 7
Answer:

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 6.
VOCABULARY
What is a statistical question? Give an example and a non-example.
Answer:
Eg for statistical question: a. How much do bags of pretzels cost at the grocery store?
Because you can anticipate that the prices will vary, it is a statistical question. table at the right may represent the prices of several bags of pretzels at a grocery store.
Eg for non-statistical question: b. How many days does your school have off for spring break this year?
Answer: Because there is only one answer, it is not a statistical question.

Question 7.
OPEN-ENDED
Write and answer a statistical question using the dot plot. Then find and interpret the number of data values.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 8
Answer: There are 16 data values on the dot plot.

Question 8.
You record the amount of snowfall each day for several days. Then you create the dot plot.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 11
a. Find and interpret the number of data values on the dot plot.
Answer: There are 13 data values on the dot plot.

b. How can you collect these data? What are the units?
Answer: We can collect the data by using the dots given in the above figure.
c. Write a statistical question that you can answer using the dot plot. Then answer the question.
Answer: dot plots are best used to show a distribution of data.

Question 9.
You conduct a survey to answer, “How many hours does a typical sixth-grade student spend exercising during a week?” Use the data in the table to answer the question.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 12
Answer:
Given the data
5, 1, 5, 3, 5, 4, 5, 2, 5, 4, 3, 4, 6, 5, 6
The typical sixth-grade student spend exercising during a week is 6 hours.

Introduction to Statistics Homework & Practice 9.1

Review & Refresh

Solve the inequality. Graph the solution.
Question 1.
x – 16 > 8
Answer: x>3.

big ideas math answers grade 6 chapter 9 statistical measures img_1

Question 2.
p + 6 ≤ 8
Answer:   p ≤ 2

big ideas math answers grade 6 chapter 9 statistical measures img_2

Question 3.
54 > 6k
Answer: 9>k

big ideas math answers grade 6 chapter 9 statistical measures img_3

Question 4.
\(\frac{m}{12}\) ≥ 3
Answer: m ≤ 36

Tell whether the ordered pair is a solution of the equation.
Question 5.
y = 4x; (2, 8)
Answer: The given ordered pair is a solution of the equation.
Given : y = 4x;(2,8)
y=8;x=2
8=4 × 2
8=8 (satisfied)

Question 6.
y = 3x + 5; (3, 15)
Answer: Given order pair is not an absolute solution of ordered pair
Given: y = 3x + 5; (3, 15)
y=15;x=3
15=3(3)+5
15=9+5
15=14 (not satisfied)

Question 7.
y = 6x – 15; (4, 9)
Answer:
The given ordered pair is a solution of the equation.
Given: y = 6x – 15; (4, 9)
9=6(4)-15
9=24-15
9=9

Question 8.
A point is reflected in the x-axis. The reflected point is (4, −3). What is the original point?
A. (-3, 4)
B. (-4, 3)
C. (-4, -3)
D. (4, 3)
Answer: B,(-4,3)

Order the numbers from least to greatest.
Question 9.
24%, \(\frac{1}{4}\) , 0.2, \(\frac{7}{20}\) , 0.32
Answer:0.24,0.25,0.2.0.35,0.32
0.2,0.24,0.32,0.35

Question 10.
\(\frac{7}{8}\), 85%, 0.88, \(\frac{3}{4}\) , 78%
Answer:0.875,0.78,0.88,0.75,0.78
0.75,0.78,0.85,0.875,0.88

Concepts, Skills, &Problem Solving

IDENTIFYING TYPES OF QUESTIONS Answer the question. Tell whether your answer should be the same as your classmates’. (See Exploration 2, p. 413.)
Question 11.
How many inches are in 1 foot?
Answer: 12 inches

Question 12.
How many pets do you have?
Answer: none

Question 13.
On what day of the month were you born?
Answer: 27th April

Question 14.
How many senators are in Congress?
Answer: The Senate is composed of 100 Senators, 2 for each state. Until the ratification of the 17th Amendment in 1913, Senators were chosen by state legislatures, not by popular vote. Since then, they have been elected to six-year terms by the people of each state.

IDENTIFYING STATISTICAL QUESTIONS
Determine whether the question is a statistical question. Explain.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 13
Question 15.
What are the eye colors of sixth-grade students?
Answer: brown

Question 16.
At what temperature (in degrees Fahrenheit) does water freeze?
Answer: 32 degrees Fahrenheit

Question 17.
How many pages are in the favorite books of students your age?
Answer: 200 pages

Question 18.
How many hours do sixth-grade students use the Internet each week?
Answer: 1.5 hour each

Question 19.
MODELING REAL LIFE
The vertical dot plot shows the heights of the players on a recent NBA championship team.
a. Find and interpret the number of data values on the dot plot.
b. How can you collect these data? What are the units?
c. Write a statistical question that you can answer using the dot plot. Then answer the question.
Answer:

Question 20.
MODELING REAL LIFE
The dot plot shows the lengths of earthworms.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 14
a. Find and interpret the number of data values on the dot plot.
Answer: There are 21 data values on the plot.
b. How can you collect these data? What are the units?
Answer: Based on dot plots and units are measured in mm.
c. Write a statistical question that you can answer using the dot plot. Then answer the question.
Answer: Find the mode of the length of earthworms using the dot plot.
23 is repeated times.
So, the mode is 23.

DESCRIBING DATA
Display the data in a dot plot. Identify any clusters, peaks, or gaps in the data.
Question 21.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 15
Answer:
bim grade 6 chapter 9 statictical measures answers key img_5

Data are clustered around 22 and around 25
Peak at 25
The gap between 16 and 21

Question 22.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 16
Answer:
bim grade 6 chapter 9 statictical measures answers key img_6

No clusters
Peak at 83
No gaps

INTERPRETING DATA
The dot plot shows the speeds of cars in a traffic study. Estimate the speed limit. Explain your reasoning.
Question 23.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 17
Answer: Most of the data clustered around 44 and 45 , hence the estimated speed is between 44-45 miles per hour

Question 24.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 18
Answer: Most of the data clustered around 65 , there is a peak at 65 and gaps between”60-62″ and 63-65.

Question 25.
DIG DEEPER!
You conduct a survey to answer, “How many hours does a sixth-grade student spend on homework during a school night?” The table shows the results.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.1 19
a. Is this a statistical question? Explain.
Answer: yes, it is a statistical question because students work in the different time zone based on individual student capacity.
b. Identify any clusters, peaks, or gaps in the data.
Answer: cluster is around 2. There is a peak at 2 and there is no gap.
c. Use the distribution of the data to answer the question.
Answer: A total of 29 data values are distributed.

RESEARCH
Use the Internet to research and identify the method of measurement and the units used when collecting data about the topic.
Question 26.
wind speed
Answer: The instruments used to measure wind are known as anemometers and can record wind speed, direction, and the strength of gusts. The normal unit of wind speed is the knot (nautical mile per hour = 0.51 m sec-1 = 1.15 mph).

Question 27.
amount of rainfall
Answer:
The standard instrument for the measurement of rainfall is the 203mm (8 inches) rain gauge. This is essentially a circular funnel with a diameter of 203mm which collects the rain into a graduated and calibrated cylinder. The measuring cylinder can record up to 25mm of precipitation

Question 28.
earthquake intensity
Answer: The Richter scale measures the largest wiggle (amplitude) on the recording, but other magnitude scales measure different parts of the earthquake. The USGS currently reports earthquake magnitudes using the Moment Magnitude scale, though many other magnitudes are calculated for research and comparison purposes.

Question 29.
REASONING
Write a question about letters in the English alphabet that is not a statistical question. Then write a question about letters that is a statistical question. Explain your reasoning.
Answer: Statistical Question: How many letters in the English alphabet are used to spell a student’s name in class?
Reasoning: The original question has one answer. This Question will have many answers.

Question 30.
REASONING
A bar graph shows the favorite colors of 30 people. Does it make sense to describe clusters in the data? peaks? gaps? Explain.
Answer: No, It doesn’t make sense to describe the distribution. Colors are not measures numerically.

Lesson 9.2 Mean

EXPLORATION 1

Finding a Balance Point
Work with a partner. The diagrams show the numbers of tokens brought to a batting cage. Where on the number line is the data set balanced ? Is this a good representation of the average? Explain.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 1

EXPLORATION 2

Finding a Fair Share
Work with a partner. One token lets you hit 12 baseballs in a batting cage. The table shows the numbers of tokens six friends bring to the batting cage.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 2
a. Regroup the tokens so that everyone has the same amount. How many times can each friend use the batting cage? Explain how this represents a “fair share. “Use Clear Definitions What does it mean for data to have an average? How does this help you answer the question?
b. how can you find the answer in part(a) algebraically?
c. Write a statistical question that can be answered using the value in part(a).
Answer:

Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 3

Try It

Find the mean of the data.
Question 1.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 6
Answer:
The sum of the data/no of values
The sum of the data=45+54+13+44+89+60+9+18;
no of values=8
The sum of the data=332:no of values=8; 332/8=41.5 is the mean of the data

Question 2.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 7
Answer:
555 is mean for the above-given data.

Question 3.
WHA IT?
The monthly rainfall in May was 0.5 inch in City A and 2 inches in City B. Does this affect your answer in Example 2? Explain.
Answer:

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 4.
NUMBER SENSE
Is the mean always equal to a value in the data set? Explain.
Answer: It is the value that is most common. You will notice, however, that the mean is not often one of the actual values that you have observed in your data set. In addition, the mean is the only measure of central tendency where the sum of the deviations of each value from the mean is always zero.

Question 5.
WRITING
Explain why the mean describes a typical value in a data set.
Answer:
A measure of central tendency is a single value that attempts to describe a set of data by identifying the central position within that set of data. The mean (often called the average) is most likely the measure of central tendency that you are most familiar with, but there are others, such as the median and the mode.

Question 6.
NUMBER SENSE
What can you determine when the mean of one data set is greater than the mean of another data set? Explain your reasoning.
Answer:

Question 7.
COMPARING MEANS
Compare the means of the data sets.
Data set A: 43, 32, 16, 41, 24, 19, 30, 27
Data set B: 44, 18, 29, 24, 36, 22, 26, 21
Answer:
An outlier is a data value that is much greater or much less than the other values. When included in a data set, it can affect the mean.

Question 8.
DIG DEEPER!
The monthly numbers of customers at a store in the first half of a year are 282, 270, 320, 351, 319, and 252. The monthly numbers of customers in the second half of the year are 211, 185, 192, 216, 168, and 144. Compare the mean monthly customers in the first half of the year with the mean monthly customers in the second half of the year.
Answer:

Question 9.
The table shows tournament finishes for a golfer. What place does the golfer typically finish in tournaments? Explain how you found your answer.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 12
Answer: Mean=sum of data/number of data values
Mean=118/16
Mean=7.375
a. The golfer’s mean finish was about 7th
b. The finishes 37 and 26 are much greater than other finishes. They are outliers

Mean Homework & Practice 9.2

Review & Refresh

Determine whether the question is a statistical question. Explain.
Question 1.
How tall are sixth-grade students?
Answer: The average height for a sixth grader (age 12) is about five feet. Girls tend to be about an inch taller on average. But there is a wide range. Any height from about 52 inches (4′4″) to 65 inches (5′5″) is in the normal range according to the CDC.

Question 2.
How many minutes are there in 1 Year?
Answer:
An average Gregorian year is 365.2425 days (52.1775 weeks, 8765.82 hours, 525949.2 minutes, or 31556952 seconds). For this calendar, a common year is 365 days (8760 hours, 525600 minutes, or 31536000 seconds), and a leap year is 366 days (8784 hours, 527040 minutes, or 31622400 seconds).

Question 3.
How many counties are in Tennessee?
Answer: Tennessee’s 95 counties are divided into four TDOT regions. Regional offices are located in Jackson (Region 4), Nashville (Region 3), Chattanooga (Region 2), and Knoxville (Region 1).

Question 4.
What is a student’s favorite sport?
Answer: cricket

Write the percent as a fraction or mixed number in simplest form.
Question 5.
84%
Answer:0.84

Question 6.
71%
Answer:0.71

Question 7.
353%
Answer:3.53

Question 8.
0.2%
Answer:0.002

Divide. Check your answer.
Question 9.
11.7 ÷ 9
Answer:1.3

Question 10.
\(\sqrt [ 5 ]{ 72.8 } \)
Answer: 2.35

Question 11.
\(\sqrt [ 6.8 ]{ 28.56 } \)
Answer: 1.63

Question 12.
93 ÷ 3.75
Answer:24.8

Concepts, Skills, & Problem Solving

FINDING A FAIR SHARE Regroup the amounts so that each person has the same amount. What is the amount? (See Exploration 2, p. 419.)
Question 13.
Dollars brought by friends to a fair: 11, 12, 12, 12, 12, 12, 13
Answer:
Given : 11,12,12,12,12,12,13.
Mean=Sum of data/number of data values
Mean=84/7
Mean=12
Answer = 12 dollars for each friend

Question 14.
Tickets earned by friends playing an arcade game: 0, 0, 0, 1, 1, 2, 3
Answer:
Given : 0,0,0,1,1,2,3.
Mean=Sum of data/number of data values
Mean= 7/7
Mean=1
Answer = 1 Tickets each friend

FINDING THE MEAN
Find the mean of the data.
Question 15.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 13
Answer: 2 is the mean of the data.

Question 16.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 14
Answer: 3 is the mean of the above-given data.

Question 17.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 15
Answer: 103 is the mean of the above-given data

Question 18.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 16
Answer: 14.8 is the mean of the above-given data.

Question 19.
MODELING REAL LIFE
You and your friends are watching a television show. One of your friends asks, “How long are the commercial breaks during this show?”Break Times (minutes)
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 17
a. Is this a statistical question? Explain.
Answer: Yes it is a statistical question.

b.Use the mean of the values in the table to answer the question.
Answer:
Given the data,
4.2, 3.5, 4.55, 2.75, 2.25
x̄ = (4.2 + 3.5 + 4.55 + 2.75 + 2.25)/5
x̄ = 17.25/5
= 3.45

Question 20.
MODELING REAL LIFE
The table shows the monthly rainfall amounts at a measuring station.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 18
a. What is the mean monthly rainfall?
Answer:
x̄ = (22.5 + 1.51 + 1.86 + 2.06 + 3.48 + 4.47 + 3.37 + 5.40 + 5.45 + 4.34 + 2.64 + 2.14)/12
= 33.54/12
= 2.795

b. Compare the mean monthly rainfall for the first half of the year with the mean monthly rainfall for the second half of the year.
Answer:
Mean:
x̄ = (22.5 + 1.51 + 1.86 + 2.06 + 3.48 + 4.47)/6
= 15.6/6
= 2.6
For second 6 months:
x̄ = (3.37 + 5.40 + 5.45 + 4.34 + 2.64 + 2.14)/6
= 23.34/6
= 3.89
The mean value of the second 6 months is greater than the first 6 months.

Question 21.
OPEN-ENDED
Create two different data sets that have six values and a mean of 21.
Answer:
Mean of 21:
Set 1:
12, 31, 21, 24, 13, 25 for these numbers we can calculate the mean we get 21
Set 2:
12, 31, 20, 30, 10, 18 for these numbers we can calculate the mean we get 21

Question 22.
MODELING REAL LIFE
The bar graph shows your cell phone data usage for five months. Describe how the outlier affects the mean. Then use the data to answer the statistical question, “How much cell phone data do you use in a month?”
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 19
Answer: 288 is a lot less than the other data values so it is an outlier
Mean with outlier=10/5
Mean with outlier = 2
Mean without outlier = 6.18/5
Mean without outlier = 1.236
The outlier causes the mean to be about 0.76 data usage.

Question 23.
MODELING REAL LIFE
The table shows the heights of the volleyball players on two teams. Compare the mean heights of the two teams. Do outliers affect either mean? Explain.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 20
Answer:
Dolphins=59+65+53+56+58+61+64+68+51+56+54+57=702
Total no of observations=12;Mean=702\12=58.5
Tigers=63+68+66+58+54+55+61+62+53+70+64+64=683
Total no of observations=12; Mean=683/12=56.9

Question 24.
REASONING
Use a dot plot to explain why the mean of the data set below is the point where the data set is balanced.
11, 13, 17, 15, 12, 18, 12
Answer:
mean = (11 + 13 + 17 + 15 + 18 + 12)/6
= 86/6
= 14.3

Question 25.
DIG DEEPER!
In your class, 7 students do not receive a weekly allowance, 5 students receive $3, 7 students receive $5, 3 students receive $6, and 2 students receive $8.
a. What is the mean weekly allowance? Explain how you found your answer.
b. A new student who joins your class receives a weekly allowance of $3.50. Without calculating, explain how this affects the mean.
Answer:
Given number of students receive no amount = 7
Number of students receive $3 = 5
Then, total amount 5 students receive = 5 × 3 = $15
Then, total amount 7 students receive = 5 × 7 = $35
Number of students receive $6 = 3
Then total amount 3 students receive = 6 × 3 = $18
Number of students receive $8 = 2
Then, total amount 2 students receive = 2 × 8 = $16
Now, the total amount all students receive =
15 + 35 + 18 + 6 = 84
The total students = 7 + 5 + 7 + 3 + 2 = 24
Mean = total amount/total amount = 84/24 = $3.5
Hence, the mean weekly allowance is $3.5

Question 26.
PRECISION
A collection of 8 geodes has a mean weight of 14 ounces. A different collection of 12 geodes has a mean weight of 14 ounces. What is the mean weight of the 20 geodes? Explain how you found your answer.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures 9.2 21
Answer:
Given,
A collection of 8 geodes has a mean weight of 14 ounces.
A different collection of 12 geodes has a mean weight of 14 ounces.
Total weight of the first 8 backpacks
8×14
112 pounds
Total weight of the second 12 backpacks
12×9
108
Total weight of the whole 20 backpacks
112+108
220
So the mean weight of the 20 backpacks
220 / 20
11

Lesson 9.3 Measures of Center

EXPLORATION 1

Finding the Median
Work with a partner.
a. Write the total numbers of letters in the first and last names of 15 celebrities, historical figures, or people you know. One person is already listed for you.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 1

Dr. B. R. Ambedkar-8
Otto von Bismarck-15
A. P. J. Abdul Kalam-10
Vallabhbhai Patel-16
Alexander Hamilton-17
Jawaharlal Nehru -15
Mother Teresa -12
Thomas Jefferson-15
J. R. D. Tata -4
Indira Gandhi -12
Sachin Tendulkar-15
Napoleon Bonaparte-17
John Adams-9
Karl Marx-8
Andrew Jackson-13
b. Order the values in your data set from least to greatest. Then write the data on a strip of grid paper with 15 boxes.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 2
c. The middle value of the data set is called the median. The value (or values) that occur most often is called the mode. Find the median and the mode of your data set. Explain how you found your answers.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 3
d. Why are the median and the mode considered averages of a data set?
Answer:

Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 4

A measure of center is a measure that describes the typical value of a data set. The mean is one type of measure of center. Here are two others.

Try It

Question 1.
Find the median and mode of the data.1, 2, 20, 4, 17, 8, 12, 9, 5, 20, 13
Answer: Given the data,
1, 2, 20, 4, 17, 8, 12, 9, 5, 20, 13
First, write the numbers in the ascending or descending order.
1, 2, 4, 5, 8, 9, 12, 13, 17, 20, 20
The Median is 9.
The mode is 20 because it is repeated more than once.

Question 2.
100, 75, 90, 80, 110, 102
Answer:
Given the data,
100, 75, 90, 80, 110, 102
First, write the numbers in the ascending or descending order.
75, 80, 90, 100, 102, 110
= (90+100)/2
= 85
Mode:
No mode in the data.

Question 3.
One member of the class was absent and ends up voting for horror. Does this change the mode? Explain.
Answer: No

Question 4.
The times (in minutes) it takes six students to travel to school are 8, 10, 10, 15, 20, and 45. Find the mean, median, and mode of the data with and without the outlier. Which measure does the outlier affect the most?
Answer:
Median:
Write the numbers in ascending or descending order
8, 10, 10, 15, 20, and 45
= (10 + 15)/2 = 25/2 = 12.5
Mode:
10 is the mode. Because it is the most repeated number.
Mean:
Adding up the values and then dividing by the number of values.
= (8 + 10 + 10 + 15 + 20 + 45)/6
= 108/6
= 18

Question 5.
WHAT IF?
The store decreases the price of each video game by$3. How does this decrease affect the mean, median, and mode?
Answer:

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 6.
FINDING MEASURES OF CENTER
Consider the data set below.
15, 18, 13, 11, 12, 21, 9, 11
a. Find the mean, median, and mode of the data.

Answer:
Given the data,
15, 18, 13, 11, 12, 21, 9, 11
x̄ = (15 + 18 + 13 + 11 + 12 + 21 + 9 + 11)/8
x̄ = 110/8
x̄ = 13.75
Median:
Write the numbers in ascending order and descending order.
9, 11, 11, 12, 13, 15, 18, 21
= (12 + 13)/2
= 12.5
Mode:
11 is the mode because this is repeated more than one time.

b. Each value in the data set is decreased by 7. How does this change affect the mean, median, and mode?
Answer:
Each value is decreased by 7 in the given data
8, 11, 6, 4, 5, 14, 2, 4
x̄ = (8 + 11 + 6 + 4 + 5 + 14 + 2 + 4)/8
x̄ = 54/8
x̄ = 6.75

Question 7.
WRITING
Explain why a typical value in a data set can be described by the median or the mode.
Answer:
For data from skewed distributions, the median is better than the mean because it isn’t influenced by extremely large values. The mode is the only measure you can use for nominal or categorical data that can’t be ordered

Question 8.
How does removing the outlier affect your answer in Example 5?
Answer:

Question 9.
It takes 10 contestants on a television show 43, 41, 62, 40, 44, 43, 44, 46, 45, and 41 seconds to cross a canyon on a zipline. Find the mean, median, and mode of the data with and without the outlier. Which measure does the outlier affect the most?
Answer:

Question 10.
The table shows the weights of several great white sharks. Use the data to answer the statistical question, “What is the weight of a great white shark?”
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 12
Answer:

Measures of Center Homework & Practice 9.3

Review & Refresh

Find the mean of the data.
Question 1.
1, 5, 8, 4, 5, 7, 6, 6, 2, 3
Answer: 4.7

Explanation:
Given the data,
1, 5, 8, 4, 5, 7, 6, 6, 2, 3
x̄ = ∑x/n
x̄ = (1 + 5 + 8 + 4 + 5 + 7 + 6 + 6 + 2 + 3)/16
x̄ = 49/16
x̄ = 3.06

Question 2.
9, 12, 11, 11, 10, 7, 4, 8
Answer: 9

Explanation:
Given the data,
9, 12, 11, 11, 10, 7, 4, 8
x̄ = ∑x/n
x̄ = (9 + 12 + 11 + 11 + 10 + 7 + 4 + 8)/8
x̄ = 72/8
x̄ = 9

Question 3.
26, 42, 31, 50, 29, 37, 44, 31
Answer: 36.25

Explanation:
Given the data,
26, 42, 31, 50, 29, 37, 44, 31
x̄ = ∑x/n
x̄ = (26+42+31+50+29+37+44+31)/8
x̄ = 290/8
x̄ = 36.25

Question 4.
53, 45, 43, 55, 28, 21, 61, 29, 24, 40, 27, 42
Answer: 39

Explanation:
Given the data,
53, 45, 43, 55, 28, 21, 61, 29, 24, 40, 27, 42
x̄ = ∑x/n
x̄ = (53+45+43+55+28+21+61+29+24+40+27+42)/12
x̄ = 468/12
x̄ = 39

Question 5.
A shelf in your room can hold at most 30 pounds.  ere are 12 pounds of books already on the shelf. Which inequality represents the number of pounds you can add to the shelf?
A. x < 18
B. x ≥ 18
C. x ≤ 42
D. x ≤ 18
Answer: x ≤ 18

Explanation:
12+x ≤ 30
12+x -12 ≤ 30-12
x ≤ 18

Find the missing values in the ratio table. Then write the equivalent ratios.
Question 6.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 13
Answer:
Big-Ideas-Math-Answers-Grade-6-Chapter-9-Statistical-Measures-9.3-13

Question 7.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 14
Answer:
Big-Ideas-Math-Answers-Grade-6-Chapter-9-Statistical-Measures-9.3-14

Find the surface area of the prism.

Question 8.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 15
Answer:
Given,
l = 6m
w = 5m
h = 5m
We know that,
Surface Area of the Prism = 2lw + 2lh + 2hw
= 2(6 × 5) + 2(6 × 8) + 2(8 × 5)
= 60 + 96 + 80
= 236 sq. meters

Question 9.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 16
Answer:
Given,
l = 4.5 ft
w = 2ft
h = 3.5ft
We know that,
Surface Area of the Prism = 2lw + 2lh + 2hw
= 2(4.5 × 2) + 2(4.5 × 3.5) + 2(2 × 3.5)
= 18 + 31.5 + 14
= 63.5 sq. ft

Question 10.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 17
Answer:
Given,
l = 6 yd
w = 4 yd
h = 2 yd
We know that,
Surface Area of the Prism = bh + 2lh + lb
= 2 × 4 + 2(6 × 5) + 6 × 2
= 8 + 60 + 12
= 80 sq. yards

Concepts, Skills, & Problem Solving

FINDING THE MEDIAN Use grid paper to find the median of the data. (See Exploration 1, p. 425.)
Question 11.
9, 7, 2, 4, 3, 5, 9, 6, 8, 0, 3, 8
Answer:
First, arrange the numbers in ascending or descending order.
= 0, 2, 3, 3, 4, 5, 6, 7, 8, 8, 9, 9
= (5 + 6)/2
= 11/2
= 5.5

Question 12.
16, 24, 13, 36, 22, 26, 22, 28, 25
Answer:
First, arrange the numbers in ascending or descending order.
13, 16, 22, 22, 24, 25, 26, 28, 36
24 is the median.
The median is the middle score in a set of given data.

FINDING THE MEDIAN AND MODE
Find the median and mode of the data.
Question 13.
3, 5, 7, 9, 11, 3, 8
Answer: The Median is 7; The Mode is 3.
Given: 3, 5, 7, 9, 11, 3, 8
Sorted list: 3,3,5,7,8,9,11
Median is the middle number in a sorted list of numbers = 7
The mode is the value that appears most frequently in a data set = 3

Question 14.
14, 19, 16, 13, 16, 14
Answer: The Median is 15; The Modes are 14 and 16.
Given: 13,14,14,16,16,19
Sorted list: 14, 19, 16, 13, 16, 14
Median is the middle number in a sorted list of numbers = 15
The mode is the value that appears most frequently in a data set = 14,16

Question 15.
16. 93, 81, 94, 71, 89, 92, 94, 99
Answer: The Median is 90.5; The Mode is 94.
Given: 16, 93, 81, 94, 71, 89, 92, 94, 99
Sorted list: 16,71,81,89,92,93,94,94,99
Median is the middle number in a sorted list of numbers = 92
The mode is the value that appears most frequently in a data set = 94

Question 16.
44, 13, 36, 52, 19, 27, 33
Answer: The Median is 33; There are no modes.
Given: 44, 13, 36, 52, 19, 27, 33
Sorted list: 13,19,27,33,36,44,52
Median is the middle number in a sorted list of numbers = 33
The mode is the value that appears most frequently in a data set = no mode

Question 17.
12, 33, 18, 28, 29, 12, 17, 4, 2
Answer: The Median is 17; The Modes are 12.
Given: 12, 33, 18, 28, 29, 12, 17, 4, 2
Sorted list: 2,4,12,12,17,18,28,29,33
Median is the middle number in a sorted list of numbers = 17
The mode is the value that appears most frequently in a data set = 12

Question 18.
55, 44, 40, 55, 48, 44, 58, 67
Answer:
The Median is 51.5
The Modes are 44 and 55.
Given: 55, 44, 40, 55, 48, 44, 58, 67
Sorted list: 40,44,44,48,55,55,58,67
Median is the middle number in a sorted list of numbers = 51.5
The mode is the value that appears most frequently in a data set = 44,55

Question 19.
YOU BE THE TEACHER
Your friend finds the median of the data. Is your friend correct? Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 18
Answer: No, first the given data is arranged in ascending order then after median is to be found. The median is 55

FINDING THE MODE
Find the mode of the data.
Question 20.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 19
Answer: The modes are Black and Blue.

Question 21.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 20
Answer: The modes are singing, dancing, comedy.

Question 22.
REASONING
In Exercises 20 and 21, can you find the mean and median of the data? Explain.
Answer: You can’t find the mean and median in exercises 20 and 21.
The data set is not made up of numbers

FINDING MEASURES OF CENTER
Find the mean, median, and mode of the data.
Question 23.
4.7, 8.51, 6.5, 7.42, 9.64, 7.2, 9.3
Answer: Given: 4.7, 8.51, 6.5, 7.42, 9.64, 7.2, 9.3
Sorted list: 4.7, 6.5, 7.2, 7.42, 8.51, 9.64
Mean: x̄ = ∑x/n
x̄ = (4.7+6.5+7.2+7.42+8.51+9.64)/6
x̄ = 43.97/6
x̄ =7.32
Median: 7.42.
Mode: no mode.

Question 24.
8\(\frac{1}{2}\), 6\(\frac{5}{8}\), 3\(\frac{1}{8}\), 5\(\frac{3}{4}\), 6\(\frac{5}{8}\), 5\(\frac{1}{4}\), 10\(\frac{5}{8}\), 4\(\frac{1}{2}\)
Answer: Given: 8.5, 6.62, 3.12, 5.75, 6.62, 5.25, 10.62, 4.5
Sorted list: 3.12, 4.5, 5.25, 5.75, 6.62, 6.62, 8.5, 10.62
Mean: x̄ = ∑x/n
x̄ = (3.12, 4.5, 5.25, 5.75, 6.62, 6.62, 8.5, 10.62)/8
x̄ =
x̄ =
Median: 6.18
Mode: 6.62

Question 25.
MODELING REAL LIFE
The weights (in ounces) of several moon rocks are shown in the table. Find the mean, median, and mode of the weights.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 21
Answer:
Mean
x̄ = (2.2 + 2.2 + 3.2 + 2.4 + 2.8 + 3.4 + 2.6 + 3.0 + 2.5)/9
Median:
Write the moon rock weights in ascending or descending order.
2.6 is the median
Mode:
2.2 is repeated move times
So, 2.2 is the mode.

REMOVING AN OUTLIER Find the mean, median, and mode of the data with and without the outlier. Which measure does the outlier affect the most?
Question 26.
45, 52, 17, 63, 57, 42, 54, 58
Answer:
Outliners means removing of the small data value
17 is the outliner
x̄ = ∑x/n
= (45 + 52 + 17 + 63 + 57 + 42 + 54 + 58)/8
= 388/8 = 48.5
Mean without outliner:
= (45 + 52 + 63 + 57 + 42 + 54 + 58)/7
= 371/7 = 53
Median with outliner:
17, 42, 45, 52, 54, 57, 58, 63
= (52 + 54)/2
= 106/2
= 53
Median without outliner:
42, 45, 52, 54, 57, 58, 63
54 is the median
Mode:
There is no change of value in the without outliner and with the outliner.
So, there is no mode in the data values.

Question 27.
85, 77, 211, 88, 91, 84, 85
Answer:
77 is the outliner
Mean with outliner:
x̄ = (85 + 77 + 211 + 88 + 91 + 84 + 85)/7
=721/7
= 103
Mean without outliner:
x̄ = (85 + 211 + 88 + 91 + 84 + 85)/6
= 644/6
= 107
Median with outliner:
Write the data values in ascending or descending order.
77, 84, 85, 88, 91, 211
85 is the median.
Median without outliner:
84, 85, 85, 88, 91, 211
= (85 + 88)/2
= 173/2
= 86.5
Mode:
There is no change of value in the without outliner and with the outliner.
85 is the mode.

Question 28.
23, 73, 45, 27, 23, 25, 43, 45
Answer:
73 is the outliner
Mean with outliner:
Mean = (23 + 45 + 27 + 23 + 25 + 43 + 45)
= 231/7
= 33
Mean with outliner:
Mean = (23 + 45 + 27 + 23 + 25 + 43 + 45+ 73)
= 304/8
= 38

Question 29.
101, 110, 99, 100, 64, 112, 110, 111, 102
Answer:
64 is the outliner
Mean with outliner:
x̄ = (101 + 110 + 99 + 100 + 64 + 112 + 110 + 111 + 102)/9
= 901/9 = 101
Mean with outliner:
x̄ = (101 + 110 + 99 + 100 + 112 + 110 + 111 + 102)/8
= 755/8
= 94.37
Median:
Write the data values in ascending or descending order
64, 99, 100, 101, 102, 110, 111, 112
Median without outliner:
= (101 + 102)/2
= 203/2
= 101.5
Mode:
Mode with and without outliner = 110

Question 30.
REASONING
The table shows the monthly salaries for employees at a company.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 22
a. Find the mean, median, and mode of the data.
b. Each employee receives a 5% raise. Find the mean, median, and mode of the data with the raise. How does this increase affect the mean, median, and mode of the data?
c. How are the mean, median, and mode of the monthly salaries related to the mean, median, and mode of the annual salaries?
Answer:

CHOOSING A MEASURE OF CENTER
Find the mean, median, and mode of the data. Choose the measure that best represents the data. Explain your reasoning.
Question 31.
48, 12, 11, 45, 48, 48, 43, 32
Answer:
Write the data in ascending order or descending order.
11, 12, 32, 43, 45, 48, 48, 48
= (32 + 43)/2
= 75/2
= 37.5
48 is the mode of the data

Question 32.
12, 13, 40, 95, 88, 7, 95
Answer:
Mean:
x̄ = ∑x/n
= (12 + 13 + 40 + 95 + 88 + 7 + 95)/7
= 350/7 = 50
Median:
7, 12, 13, 40, 88, 95, 95
40 is the median
mode:
95 is the mode.

Question 33.
2, 8, 10, 12, 56, 9, 5, 2, 4
Answer:
Mean:
x̄ = ∑x/n
= (2 + 8 + 10 + 12 + 56 + 9 + 5 + 2 + 4)/9
= 108/9
= 12
Median:
2, 2, 4, 5, 8, 9, 10, 12, 56
8 is the median
Mode:
2 is the mode.

Question 34.
126, 62, 144, 81, 144, 103
Answer:
Mean:
x̄ = ∑x/n
= (126 + 62 + 144 + 81 + 144 + 103)6
= 660/60
= 11
Median:
62, 81, 103, 126, 144, 144
= (103 + 126)/2
= 114.5

Question 35.
MODELING REAL LIFE
The weather forecast for a week is shown. Which measure of center best represents the high temperatures? the low temperatures? Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 23
Answer:

Question 36.
RESEARCH
Find the costs of 10 different boxes of cereal. Choose one cereal whose cost will be an outlier.
a. Which measure of center does the outlier affect the most? Justify your answer.
b. Use the data to answer the statistical question, “How much does a box of cereal cost?”
Answer:

Question 37.
PROBLEM SOLVING
The bar graph shows the numbers of hours you volunteered at an animal shelter. What is the minimum number of hours you need to volunteer in the seventh week to justify that you volunteered an average of 10 hours per week for the 7 weeks? Explain your answer using measures of center.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 24
Answer:

Question 38.
REASONING
Why is the mode the least frequently used measure of center to describe a data set? Explain.
Answer:
The mode can be helpful in some analyses, but generally it does not contain enough accurate information to be useful in determining the shape of a distribution. When it is not a “Normal Distribution” the Mode can be misleading, although it is helpful in conjunction with the Mean for defining the amount of skewness in a distribution.

Question 39.
DIG DEEPER!
The data are the prices of several fitness wristbands at a store.
$130 $170 $230 $130
$250 $275 $130 $185
a. Does the price shown in the advertisement represent the prices well? Explain.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures 9.3 25
b. Why might the store use this advertisement?
c. In this situation, why might a person want to know the mean? the median? the mode? Explain.
Answer:

Question 40.
CRITICAL THINKING
The expressions 3x, 9x, 4x, 23x, 6x, and 3x form a data set. Assume x> 0.
a. Find the mean, median, and mode of the data.
b. Is there an outlier? If so, what is it?
Answer:
Mean: This is an average of all the numbers. Add up the numbers and then divide by how many numbers there are.
(3 + 9 + 4 + 23 + 6 + 3)/6 = 48/6 = 8
Median: The number in the middle, when the numbers are in order. If there are 2 middle numbers, average them together.
3, 3, 4, 6, 9, 23 : 4 and 6 are the middle numbers. 4+6/2 = 10/2 = 5
Mode: What value occurs most frequently? 3 is the only duplicate
Outlier: What value is abnormal to our set of data? All of our numbers are small (single digits), except for 23. That makes it an outlier.

Lesson 9.4 Measures of Variation

EXPLORATION 1

Interpreting Statements
Work with a partner. There are 24 students in your class. Your teacher makes the following statements.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 1
• “The exam scores range from 75% to 96%.”
a. What does each statement mean? Explain.
b. Use your teacher’s statements to make a dot plot that can represent the distribution of the exam scores of the class.
c. Compare your dot plot with other groups’. How are they alike? different?

EXPLORATION 2

Grouping Data
Work with a partner. The numbers of U.S.states visited by students in a sixth-grade class are shown.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 2
a. Represent the data using a dot plot. Between what values do the data range?
b. Use the dot plot to make observations about the data.
c. How can you describe the middle half of the data?

A measure of variation is a measure that describes the distribution of a data set. A simple measure of variation to find is the range. The range of a data set is the difference of the greatest value and the least value.

Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 3

Try It
Question 1.
The ages of people in line for a roller coaster are 15, 17, 21, 32, 41, 30, 25, 52, 16, 39, 11, and 24. Find and interpret the range of the ages.
Answer:
Given,
The ages of people in line for a roller coaster are 15, 17, 21, 32, 41, 30, 25, 52, 16, 39, 11, and 24.
Range = (upper value – lower value)/2
= (52 – 11)/2
= 41/2
= 20.5

Question 2.
The data are the number of pages in each of an author’s novels. Find and interpret the interquartile range of the data.
356, 364, 390, 468, 400, 382, 376, 396, 350
Answer:
Given,
The data are the number of pages in each of an author’s novels.
356, 364, 390, 468, 400, 382, 376, 396, 350
Lower quartile = 360
Upper quartile = 398
Interquartile range = 38

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 3.
WRITING
Explain why the variability of a data set can be described by the range or the interquartile range.
Answer:
The interquartile range is the third quartile (Q3) minus the first quartile (Q1). But the IQR is less affected by outliers: the 2 values come from the middle half of the data set, so they are unlikely to be extreme scores. The IQR gives a consistent measure of variability for skewed as well as normal distributions.

Question 4.
DIFFERENT WORDS, SAME QUESTION
Which is different? Find “both” answers.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 8
Answer:

Question 5.
The table shows the distances traveled by a paper airplane. Find and interpret the range and interquartile range of the distances.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 11
Answer: Given: 13.5, 12.5, 21, 16.75, 10.25, 19, 32, 26.5, 29,16.25, 28.5, 18.5.

Question 6.
The table shows the years of teaching experience of math teachers at a school. How do the outlier or outliers affect the variability of the data?
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 12
Answer:
Given the data
5, 10, 7, 8, 10, 11, 22, 8, 6, 35
22 is added to the data set
22 is the outliner
so there is no effect to measure of center and the measure of variability.

Measures of Variation Homework & Practice 9.4

Review & Refresh

Find the mean, median, and mode of the data.
Question 1.
4, 8, 11, 6, 4, 5, 9, 10, 10, 4
Answer:
Mean = x̄ = (4 + 8 + 11 + 6 + 4 + 5 + 9 + 10 + 10 + 4)/10
= 71/10
= 7.1
Median:
Write the data in ascending or descending order.
4, 4, 4, 5, 6, 8, 9, 10, 10, 11
= (5 + 8)/2
= 13/2
=6.5
Mode:
More number if data repeated is called mode.
4 is the mode.

Question 2.
74, 78, 86, 67, 80
Answer:
Mean = x̄ = (74 + 78 + 86 + 67 + 80)/5
= 385/5
= 77
Median:
Write the data in ascending or descending order.
67, 74, 78, 80, 86
78 is the median
Mode:
There is no mode in the data.

Question 3.
15, 18, 17, 17, 15, 16, 14
Answer:
Mean = x̄ = (15 + 18 + 17 + 17 + 15 + 16 + 14)/7
= 112/7 = 16
Median:
Write the data in ascending or descending order.
14, 15, 15, 16, 17, 17, 18
16 is the median
Mode:
17, 15 are the median.

Question 4.
31, 14, 18, 26, 17, 32
Answer:
Mean:
x̄ = (31 + 14 + 18 + 26 + 17 + 32)/6
Median:
Write the data in ascending or descending order.
14, 17, 18, 26, 31, 32
= (18 + 26)/2
= 44/2
= 22
Mode:
There is no mode in the data.

Copy and complete the statement using < or >.
Question 5.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 13
Answer:
A negative number is less than the positive number
6 > -7

Question 6.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 14
Answer:
A negative number is less than the positive number
-3 < 0

Question 7.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 15
Answer:
A negative number is less than the positive number
14 > -14

Question 8.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 16
Answer:
A negative number is less than the positive number
8 > -10

Find the surface area of the pyramid.
Question 9.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 17
Answer:
Given,
Length = 12 mm
Height = 14 mm
A = a² + 2a √a²/4 + h²
Area = 509.56 sq. mm

Question 10.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 18
Answer:
Given,
Length = 5 in
Height = 8.5 in
A = a² + 2a √a²/4 + h²
Area = 113.6 sq. inches

Question 11.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 19
Answer:
Given,
Length = 6 ft
Height = 9 ft
A = a² + 2a √a²/4 + h²
Area = 149.84 sq.ft

Concepts, Skills, &Problem Solving

INTERPRETING STATEMENTS There are 20 students in your class. Your teacher makes the two statements shown. Use your teacher’s statements to make a dot plot that can represent the distribution of the scores of the class. (See Exploration 1, p. 433.)
Question 12.
“The quiz scores range from 65% to 95%.”
“The scores were evenly spread out.”
Answer:

Question 13.
“The project scores range from 78% to 93%.”
“Most of the students received low scores.”
Answer:

FINDING THE RANGE Find the range of the data.
Question 14.
4, 8, 2, 9, 5, 3
Answer: 7

Explanation:
Range is the difference of higher value and lower value
lowest value = 2
highest value = 9
R = 9 – 2
R = 7

Question 15.
28, 42, 36, 23, 14, 47, 40
Answer: 33

Explanation:
The range is the difference between higher value and lower value
Lowest value: 14
Highest value: 47
Range = 47 – 14
R = 33

Question 16.
26, 21, 27, 33, 24, 29
Answer: 12

Explanation:
The range is the difference between higher value and lower value
Lowest value: 21
Highest value: 33
Range = 33 – 21
R = 12

Question 17.
52, 40, 49, 48, 62, 54, 44, 58, 39
Answer: 23

Explanation:
The range is the difference between higher value and lower value
Lowest value: 39
Highest value: 62
Range = 62 – 39
R = 23

Question 18.
133, 117, 152, 127, 168, 146, 174
Answer: 57

Explanation:
The range is the difference between higher value and lower value
Lowest value: 117
Highest value: 174
Range = 174 – 117
R = 57

Question 19.
4.8, 5.5, 4.2, 8.9, 3.4, 7.5, 1.6, 3.8
Answer: 7.3

Explanation:
The range is the difference of higher value and lower value
Lowest value: 1.6
Highest value: 8.9
Range = 8.9 – 1.6
R = 7.3

Question 20.
YOU BE THE TEACHER
Your friend finds the range of the data. Is your friend correct? Explain your reasoning.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 20
Answer:
The range is the difference between higher value and lower value
Lowest value: 28
Highest value: 59
Range =  59 – 28
Range = 31

FINDING THE INTERQUARTILE RANGE Find the interquartile range of the data.
Question 21.
4, 6, 4, 2, 9, 1, 12, 7
Answer: 6

Explanation:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 2.5
Upper quartile (xU): 8.5
IQR = 8.5 – 2.5
IQR = 6

Question 22.
18, 22, 15, 16, 15, 13, 19, 18
Answer: 3.75

Explanation:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 15
Upper quartile (xU): 18.75
IQR = 18.75 – 15
= 3.75

Question 23.
40, 33, 37, 54, 41, 34, 27, 39, 35
Answer: 7

Explanation:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 33.5
Upper quartile (xU): 40.5
IQR = 40.5 – 33.5
= 7

Question 24.
84, 75, 90, 87, 99, 91, 85, 88, 76, 92, 94
Answer: 8

Explanation:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 84
Upper quartile (xU): 92
IQR = 92 – 84
= 8

Question 25.
132, 127, 106, 140, 158, 135, 129, 138
Answer: 12

Explanation:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 127.5
Upper quartile (xU): 139.5
IQR = 139.5 – 127.5
= 12

Question 26.
38, 55, 61, 56, 46, 67, 59, 75, 65, 58
Answer: 12.75

Explanation:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 52.75
Upper quartile (xU): 65.5
IQR = 65.5  – 52.75
= 12.75

Question 27.
MODELING REAL LIFE
The table shows the number of tornadoes in Alabama each year for several years. Find and interpret the range and interquartile range of the data. Then determine whether there are any outliers.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 21
Answer:
The data is 65, 32, 54, 23, 55, 145,37, 80, 94, 42, 69, 77
Range:
Lowest value: 23
Highest value: 145
R = Highest value – Lowest value
R = 145 – 23
R = 122
IQR:
This simple formula is used for calculating the interquartile range:
IQR = Xu – Xl
Lower quartile (xL): 38.25
Upper quartile (xU): 79.25
IQR = 79.25 – 38.25
= 41

Question 28.
WRITING
Consider a data set that has no mode. Which measure of variation is greater, the range or the interquartile range? Explain your reasoning.
Answer:
It would be based on the set of numbers you have, but in most cases, it is the interquartile range, because the mode is usually closer to the median. This leaves the interquartile range as a larger number.

Question 29.
CRITICAL THINKING
Is it possible for the range of a data set to be equal to the interquartile range? Explain your reasoning.
Answer:
The interquartile range (IQR) is a measure of variability, based on dividing a data set into quartiles. Quartiles divide a rank-ordered data set into four equal parts.

Question 30.
REASONING
How does an outlier affect the range of a data set? Explain.
Answer:
Outlier An extreme value in a set of data that is much higher or lower than the other numbers. Outliers affect the mean value of the data but have little effect on the median or mode of a given set of data.

Question 31.
MODELING REAL LIFE
The table shows the numbers of points scored by players on a sixth-grade basketball team in a season.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 22
a. Find the range and interquartile range of the data.
b. Identify the outlier(s) in the data set. Find the range and interquartile range of the data set without the outlier(s). Which measure does the outlier or outliers affect more?
Answer:

Question 32.
DIG DEEPER!
Two data sets have the same range. Can you assume that the interquartile ranges of the two data sets are about the same? Give an example to justify your answer.
Answer:
Yes,
A data set with the least value of 2 and the greatest value of 20 will have the same range as a data set with the least value of 82 and the greatest value of 100 will have the same range of 18.

Question 33.
MODELING REAL LIFE
The tables show the ages of the finalists for two reality singing competitions.
Big Ideas Math Solutions Grade 6 Chapter 9 Statistical Measures 9.4 23
a. Find the mean, median, range, and interquartile range of the ages for each show. Compare the results.

Answer:
18, 15, 22, 18, 24, 17, 21, 16, 28, 21
Mean:
x̄ = ∑x/n = (18 + 15 + 22 + 18 + 24 + 17 + 21 + 16 + 28 + 21)/10
=200/10 = 20
Median:
15, 16,  17,  18,  18, 21, 22, 24, 28
= (18 + 21)/2
= 39/2
= 19.5
Range:
(28 – 15)/2
= 13/2
= 6.5
interquartile range:
Number of observations: 10
Xl = 16.75
Xu = 22.5
Xu – Xl = 5.75
Ages of show B:
Mean:
x̄ = ∑x/n = (21 + 20 + 23 + 13 + 15 + 18 + 17 + 22 + 36 + 25)/10
= 210/10 = 21
Median:
13, 15, 17, 18, 20, 21, 22, 23, 25, 36
= (20 + 21)/2 = 41/2 = 20.5
Range:
(36 – 13)/2
= 23/2
= 11.5
Interquartile Range:
Samples = 10
Xl = 16.5
Xu = 23.5

b. A 21-year-old is voted off Show A, and the 36-year-old is voted off Show B. How do these changes affect the measures in part(a)? Explain.
Answer:
Mean:
x̄ = ∑x/n = (18 + 17 + 15 + 22 + 16 + 18 + 28 + 24)/8
= 158/8
= 79
Median: 15, 16, 17, 18, 18, 22, 24, 28
(18 + 18)/2
= 36/2
= 18
Range:
(28 – 15)/2
= 13/2
= 6.5
Interquartile Range:
Samples = 8
Xl = 16.25
Xu = 23.5
Interquartile Range = 23.5 – 16.25
= 7.25
21, 20, 23, 13, 15, 18, 17, 22, 25
Mean = (21 + 20 + 23 + 13 + 15 + 18 + 17 + 22 + 25)/9
= 174/2
= 87
Median:
13, 15, 17, 18, 21, 20, 22, 23, 25
21 is the median
Range:
(25 – 13)/2
= 12/2
= 6
Interquartile Range:
data = 9
Xl = 16
Xu = 22.5
(Xu – Xl) = 22.5 – 16
= 6.5
In Part A there is no effect on the range and it affects the mean, median, interquartile.

Question 34.
OPEN-ENDED
Create a set of data with 7 values that has a mean of 30, a median of 26, a range of 50, and an interquartile range of 36.
Answer:
The first thing we need to do is to put the data in increasing order. This is needed to calculate the median:
30,31,32,33,34,35,35,36,37,39

Lesson 9.5 Mean Absolute Deviation

Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 1

EXPLORATION 1

Finding Distances from the Mean
Work with a partner. The table shows the exam scores of 14 students in your class.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 2
a. Which exam score deviates the most from the mean? Which exam score deviates the least from the mean? Explain how you found your answers.
b. How far is each data value from the mean?
c. Divide the sum of the values in part(b) by the number of values. In your own words, what does this represent?
d. REASONING Ina data set, what does it mean when the value you found in part(c) is close to 0? Explain.

Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 3

Another measure of variation is the mean absolute deviation. The mean absolute deviation is an average of how much data values differ from the mean.

Try It
Question 1.
Find and interpret the mean absolute deviation of the data.
5, 8, 8, 10, 13, 14, 16, 22
Answer: Number of observations : 8
Mean: 12

Question 2.
WHAT IF?
The pitcher allows 4 runs in the next game. How would you expect the mean absolute deviation to change? Explain.
Answer:

Self-Assessment for Concepts & Skills

Solve each exercise. Then rate your understanding of the success criteria in your journal.
Question 3.
WRITING
Explain why the variability of a data set can be described by the mean absolute deviation.
Answer:

Question 4.
FINDING THE MEAN ABSOLUTE DEVIATION
Find and interpret the mean absolute deviation of the data. 8, 12, 4, 3, 14, 1, 9, 13
Answer: number of observations:8
Mean: 8
mean absolute deviation: 4

Question 5.
WHICH ONE do DOESN’T BELONG?
Which one does not belong with the other three? Explain your reasoning.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 6
Answer: MEAN
A mean is different from all the above-given factors
A mean is the simple mathematical average of a set of two or more numbers.
The mean for a given set of numbers can be computed in more than one way, including the arithmetic mean method, which uses the sum of the numbers in the series, and the geometric mean method, which is the average of a set of products.

Question 6.
The tables show the numbers of questions answered correctly by members of two teams on a game show. Compare the mean, median, and mean absolute deviation of the numbers of correct answers for each team. What can you conclude?
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 9
Answer:
Tiger sharks
3, 6, 5, 4, 4, 2
Mean: (3 + 6 + 5 + 4 + 4 + 2)/6
= 24/6
= 4
Median:
2, 3, 4, 4, 5, 6
= (4 + 4)/2
= 4
MAD:
Number of observations: 6
Mean = 4
MAD = 1
Bear Cats:
Mean:
6, 1, 4, 1, 8, 4
(6 + 1 + 4 + 1 + 8 + 4)/6
= 24/6
= 4
Median:
1, 1, 4, 4, 6, 8
= (4 + 4)/2
= 4
MAD:
Number of observations: 6
Mean = 4
MAD = 2
The mean, Median, Mean Absolute Deviation of both tiger sharks and Bear Cats are the same.

Question 7.
DIG DEEPER!
The data set shows the numbers of books that students in your book club read last summer.
8, 6, 11, 12, 14, 12, 11, 6, 15, 9, 7, 10, 9, 13, 5, 8
A new student who read 18 books last summer joins the club. Is18 an outlier? How does including this value in the data set affect the measures of center and variation? Explain.
Answer: 8 is added to the dataset.
Yes, 18 is an outliner
No, it does not affect the measures of the center and variation by removing the outliner.
If the outliner is not removed then it affects the measures of center and variation.

Mean Absolute Deviation Homework & Practice 9.5

Review & Refresh

Find the range and interquartile range of the data.
Question 1.
23, 45, 39, 34, 28, 41, 26, 33
Answer:
Number of observations:8
Lower quartile (xL): 26.5
Upper quartile (xU): 40.5
interquartile range = 14
Range:
Number of observations:8
Lowest value: 23
Highest value: 45
Range = 45 – 23
= 22

Question 2.
63, 53, 48, 61, 69, 63, 57, 72, 46
Answer:
Number of observations:9
Lower quartile (xL): 50.5
Upper quartile (xU): 66
interquartile range = 15.5
Range:
Number of observations:9
Lowest value: 46
Highest value: 72
Range = 26

Graph the integer and its opposite.
Question 3.
15
Answer:
Big Ideas Math Grade 6 Chapter 9 Statistics Answer Key img_5

Question 4.
17
Answer:
Big Ideas Math Grade 6 Chapter 9 Statistics Answer Key img_6

Question 16.
– 22
Answer:
Big Ideas Math Grade 6 Chapter 9 Statistics Answer Key img_7

Question 7.
Find the numbers of faces, edges, and vertices of the solid.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 10
Answer:
The name of the solid is a pentagon.
Number of vertices = 5
Number of faces = 5
Numver of edges = 5

Write the word sentence as an equation.
Question 8.
17 plus a number q is 40.
Answer:
We have to write the equation for the word sentence.
The phrase ‘plus’ indicates ‘+’
17 + q = 40

Question 9.
The product of a number s and 14 is 49.
Answer:
We have to write the equation for the word sentence.
The phrase product indicates ‘×’
s × 14 = 49

Question 10.
The difference of a number b and 9 is 32.
Answer:
We have to write the equation for the word sentence.
The phrase difference indicates ‘-‘
b – 9 = 32

Question 11.
The quotient of 36 and a number g is 9.
Answer:
We have to write the equation for the word sentence.
The phrase quotient indicates ‘÷’
36 ÷ g = 9

Concepts, Skills, &Problem Solving

FINDING DISTANCES FROM THE MEAN Find the average distance of each data value in the set from the mean. (See Exploration 1, p. 439.)
Question 12.
Model years of used cars on a lot: 2014, 2006, 2009, 2011, 2005
Answer:

Question 13.
Prices of kites at a shop: $7, $20, $9, $35, $12, $15, $7, $10, $20, $25
Answer:

FINDING THE MEAN ABSOLUTE DEVIATION Find and interpret the mean absolute deviation of the data.
Question 14.
69, 51, 71, 77, 71, 80, 75, 63, 73
Answer:
Given the data
69, 51, 71, 77, 71, 80, 75, 63, 73
Number of samples = 9
Mean Absolute Deviation = 70

Question 15.
94, 86, 95, 99, 88, 90
Answer:
Given the data
94, 86, 95, 99, 88, 90
Number of samples = 6
Mean Absolute Deviation = 92

Question 16.
46, 54, 43, 57, 50, 62, 78, 42
Answer:
Given the data
46, 54, 43, 57, 50, 62, 78, 42
Number of samples = 8
Mean Absolute Deviation = 54

Question 17.
25, 28, 20, 22, 32, 28, 35, 34, 30, 36
Answer:
Given the data
25, 28, 20, 22, 32, 28, 35, 34, 30, 36
Number of samples = 10
Mean Absolute Deviation = 29

Question 18.
101, 115, 124, 125, 173, 165, 170
Answer:
Given the data
101, 115, 124, 125, 173, 165, 170
Number of samples = 7
Mean Absolute Deviation = 139

Question 19.
1.1, 7.5, 4.9, 0.4, 2.2, 3.3, 5.1
Answer:
Given the data
1.1, 7.5, 4.9, 0.4, 2.2, 3.3, 5.1
Number of samples = 7
Mean Absolute Deviation = 3.5

Question 20.
\(\frac{1}{4}, \frac{5}{8}, \frac{3}{8}, \frac{3}{4}, \frac{1}{2}\)
Answer:
Number of observations:5
Mean (x̄): 0.5
Mean Absolute Deviation (MAD): 0.15

Question 21.
4.6, 8.5, 7.2, 6.6, 5.1, 6.2, 8.1, 10.3
Answer:
Number of observations:8
Mean (x̄): 7.075
Mean Absolute Deviation (MAD): 1.45

Question 22.
YOU BE THE TEACHER
Your friend finds and interprets the mean absolute deviation of the data set 35, 40, 38, 32, 42, and 41. Is your friend correct? Explain your reasoning.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 11
Answer:
x̄ = ∑x/n = (35 + 40 + 38)/3
= 113/3
= 37.6
Yes, the data values are different from the mean by an average of 3.

Question 23.
MODELING REAL LIFE
The data set shows the admission prices at several glass-blowing workshops.
$20, $20, $16, $12, $15, $25, $11
Find and interpret the range, interquartile range, and mean absolute deviation of the data.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 12
Answer:
Range = (25 – 11)
= 14/2
= 7
Interquartile range:
Samples = 7
Xl = 12
Xu = 20
Xu – Xl = 20 – 12
= 8
Absolute Deviation of the data:
Data = 7
Mean = 17
Mean Absolute Deviation = 4

Question 24.
MODELING REAL LIFE
The table shows the prices of the five most-expensive and least-expensive dishes on a menu. Find the MAD of each data set. Then compare their variations.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 13
Answer:
Five expensive dishes
$28, $30, $28, $39, $25
MAD:
Dishes = 5
Mean $30
MAD = $3.6
First leasr expensive dishes:
$7, $7, $10, $8, $12
MAD:
Dishes = 5
Mean $8.8
MAD = $1.76
Mean Absolute Deviation of five most expensive dishes is greater than Mean Absolute Deviation of five least expensive dishes.

Question 25.
REASONING
The data sets show the years of the coins in two collections.
Your collection: 1950, 1952, 1908, 1902, 1955, 1954, 1901, 1910
Your friend’s collection: 1929, 1935, 1928, 1930, 1925, 1932, 1933, 1920
Compare the measures of center and the measures of variation for each data set. What can you conclude?
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 14
Answer:
The measure of center is a value of the center or middle of a data set.
There are 4 measures of center they are
Mean
Median
Mode
Midrange
four measures of variations
Range
Interquartile range
Variance
Standard deviation
your collection:
Mean: (1950 + 1952 + 1908 + 1902 + 1955 + 1954 + 1901 + 1910)/8
= 1,929
Median: 1901, 1902, 1908, 1910, 1950, 1952, 1954, 1955
= (1910 + 1952)/2
= 1930
Mode: There is no mode
Midrange:
(1955 + 1901)/2
= 3856/2
= 1928
Range:
(1955 – 1901)/2
= 54/2
= 27
Interquartile range:
Number of observations = 8
Xl = 1903.5
Xu = 1953.5
Interquartile range = 50
Variance = 655.14
Standard deviation = 25.59

Question 26.
MODELING REAL LIFE
You survey students in your class about the numbers of movies they watched last month. A new student joins the class who watched 22 movies last month. Is22 an outlier? How does including this value affect the measures of center and the measures of variation? Explain.
Big Ideas Math Answer Key Grade 6 Chapter 9 Statistical Measures 9.5 15
Answer:

REASONING
Which data set would have the greater mean absolute deviation? Explain your reasoning.
Question 27.
guesses for number of gumballs in a jar
guesses for number of baseballs in a jar
Answer:
Gumballs in the jar have a greater mean absolute deviation because baseballs are larger than baseballs.

Question 28.
monthly rainfall amounts in a city
monthly amounts of water used in a home
Answer:

Question 29.
REASONING
Range, interquartile range, and mean absolute deviation are all measures of variation. Which measure of variation is most reliable? Explain your reasoning.
Answer:

Question 30.
DIG DEEPER!
Add and subtract the MAD from the mean in the original data set in Exercise 26.
a. What percent of the values are within one MAD of the mean? two MADs of the mean? Which values are more than twice the MAD from the mean?
b. What do you notice as you get more and more MADs away from the mean? Explain.
Answer:

Statistical Measures Connecting Concepts

Using the Problem-Solving Plan

Question 1.
Six friends play a carnival game in which a person throws darts at balloons. Each person throws the same number of darts and then records the portion of the balloons that pop. Find and interpret the mean, median, and MAD of the data.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures cc 1
Understand the problem.
You know that each person throws the same number of darts. You are given the portion of balloons popped by each person as a fraction, a decimal, or a percent.

Make a plan.
First, write each fraction and each decimal as a percent. Next, order the percents from least to greatest. Then find and interpret the mean, median, and MAD of the data.

Solve and check.
Use the plan to solve the problem. Then check your solution.
Answer:

Question 2.
The cost c (in dollars) to rent skis at a resort for n days is represented by the equation c = 22n. The durations of several ski rentals are shown in the table. Find the range and interquartile range of the costs of the ski rentals. Then determine whether any of the costs are outliers.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures cc 2
Answer:
Given the equation c = 22n
c = 22(1) = 22
c = 22(5) = 1100
c = 22(1) = 22
c = 22(3) = 66
c = 22(5) = 110
c = 22(4) = 88
c = 22(3) = 66
c = 22(12) = 264
c = 22(1) = 22
c = 22(12) = 264
c = 22(5) = 110
c = 22(7) = 154
c = 22(4) = 88
c = 22(1) = 22
22, 110, 22, 66, 110, 88, 66, 264, 22, 264, 110, 154, 88, 22
Range = (264 – 22)/2 = 242/2
= 141
Interquartile range:
Number of observations: 14
lower quartile = 22
upper quartile = 121
Interquartile range = upper quartile – lower quartile
= 121 – 22
= 99

Performance Task
Which Measure of Center Is Best: Mean, Median, or Mode?
At the beginning of this chapter, you watched a STEAM Video called “Daylight in the Big City.“ You are now ready to complete the performance task related to this video, available at BigIdeasMath.com. Be sure to use the problem-solving plan as you work through the performance task.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures cc 3

Statistical Measures Chapter Review

Review Vocabulary

Write the definition and give an example of each vocabulary term.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures cr 1

Graphic Organizers

You can use a Definition and Example Chart to organize information about a concept. Here is an example of a Definition and Example Chart for the vocabulary term statistical question.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures cr 2

Choose and complete a graphic organizer to help you study the concept.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures cr 3
1. mean
2. outlier
3. median
4. mode
5. range
6. quartiles
7. interquartile range

Chapter Self-Assessment

As you complete the exercises, use the scale below to rate your understanding of the success criteria in your journal.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 1

9.1 Introduction to Statistics (pp. 413–418)
Learning Target: Identify statistical questions and use data to answer statistical questions.

Determine whether the question is a statistical question. Explain.
Question 1.
How many positive integers are less than 20?
Answer: There are only 19 numbers in that group

Question 2.
In what month were the students in a sixth-grade class born?
Answer: February

Question 3.
The dot plot shows the number of televisions owned by each family on a city block.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 3
a. Find and interpret the number of data values on the dot plot.
b. Write a statistical question that you can answer using the dot plot. Then answer the question.
Answer:

Display the data in a dot plot. Identify any clusters, peaks, or gaps in the data
Question 4.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 4
Answer:

Question 5.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 5
Answer:

Question 6.
You conduct a survey to answer, “What is the heart rate of a typical sixth-grade student?” e table shows the results. Use the distribution of the data to answer the question.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 6
Answer:

9.2 Mean (pp. 419–424)
Learning Target: Find and interpret the mean of a data set.

Question 7.
Find the mean of the data.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 7
Answer:
x̄ = ∑x/n =(1112+1409+675+536+1398+162)/6
x̄ = ∑x/n=6751/6
x̄ = ∑x/n=1125.16

Question 8.
The double bar graph shows the monthly profit for two toy companies over a four-month period. Compare the mean monthly profits.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 8
Answer:
Company A:
3.6, 3, 3.4, 4
Mean: (3.6 + 3 + 3.4 + 4)/4 = 14/4 = 3.5
Company B:
3, 4.3, 2.2, 4.1
Mean: (3 + 4.3 + 2.2 + 4.1)/4
= 13.6/4
= 3.4

Question 9.
The table shows the test scores for a class of sixth-grade students. Describe how the outlier affects the mean. Then use the data to answer the statistical question, “What is the typical test score for a student in the class?”
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 9
Answer:

9.3 Measures of Center (pp. 425–432)
Learning Target: Find and interpret the median and mode of a data set.

Find the median and mode of the data.
Question 10.
8, 8, 6, 8, 4, 5, 6
Answer:
Median:
write the given data in ascending order or descending order.
4, 5, 6, 8, 8, 8
= (6 + 8)/2
= 14/2
= 7
Mode:
8 is the mode.

Question 11.
24, 74, 61, 29, 38, 27, 68, 54
Answer:
Median:
write the given data in ascending order or descending order.
24, 74, 61, 29, 38, 27, 68, 54
= 24, 27, 29, 38, 54, 61, 68, 74
= (38 + 54)/2
= 92/2
= 48
Mode:
There is no mode in the data.

Question 12.
Find the mean, median, and mode of the data set 67, 52, 50, 99, 66, 50, and 57 with and without the outlier. Which measure does the outlier affect the most?
Answer:
Given the data,
67, 52, 50, 99, 66, 50, and 57
Mean with outliner:
(67 + 52 + 50 + 99 + 66 + 50 + 57)/7
= 441/7
= 63
Mean without outliner:
66 is the median
Mode with outliner: 50
Mode without outliner:
No mode
Outliners affect the mean value of the data but have little effect on the median or mode of a given set of data.

Question 13.
The table shows the lengths of several movies. Which measure of center best represents the data? Explain your reasoning.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 13
Answer:

Question 14.
Give an example of a data set that does not have a median. Explain why the data set does not have a median.
Answer:

9.4 Measures of Variation (pp. 433–438)
Learning Target: Find and interpret the range and interquartile range of a data set.

Find the range of the data.
Question 15.
45, 76, 98, 21, 52, 39
Answer:
Lowest value = 21
Highest value = 98
Range = (98 – 21)/2
= 77/2
= 38.5

Question 16.
95, 63, 52, 8, 93, 16, 42, 37, 62
Answer:
Lowest value = 8
Highest value = 95
Range = (95 – 8)/2
= 87/2
= 43.5

Find the interquartile range of the data.
Question 17.
28, 46, 25, 76, 18, 25, 47, 83, 44
Answer:
Given the data
28, 46, 25, 76, 18, 25, 47, 83, 44
Number of observations: 9
lower quartile: 25
upper quartile: 61.5
Interquartile range (Xu – Xl) = 36.5

Question 18.
14, 25, 97, 55, 66, 28, 92, 38, 94
Answer:
Given the data
14, 25, 97, 55, 66, 28, 92, 38, 94
Number of observations: 9
lower quartile: 26.5
upper quartile: 93
Interquartile range (Xu – Xl) = 66.5

Question 19.
The table shows the weights of several adult emperor penguins. Find and interpret the range and interquartile range of the data. Then determine whether there are any outliers.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 19
Answer:
25, 27, 36, 23.5, 33.5, 31.25, 30.75, 32, 24, 29.25
Yes there are outliner
Range: (36  – 25)/2
= 11/2
= 5.5
Interquartile range:
Number of observations = 10
Mean = 29.225
MAD = 3.98

Question 20.
Two data sets have the same interquartile range. Can you assume that the ranges of the two data sets are about the same? Give an example to justify your answer.
Answer:
23
Yes, a data set with the least value of 2 and the greatest value of 20 will have the same range as a data set with the least value of 82 and the greatest value of 100 will have the same range of 18.

9.5 Mean Absolute Deviation (pp. 439–444)
Learning Target: Find and interpret the mean absolute deviation of a data set.

Find and interpret the mean absolute deviation of the data.
Question 21.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 21
Answer:
Given data,
6, 8.5, 6, 9, 10, 7, 8, 9.5
No. of observations: 8
Mean = 8
Mean Absolute Deviation: 1.25

Question 22.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 22
Answer:
Given data,
130, 150, 190, 100, 175, 120, 165, 140, 180, 190
No. of observations: 10
Mean = 154
Mean Absolute Deviation: 26

Question 23.
The table shows the prices of the five most-expensive and least-expensive manicures given by a salon technician on a particular day. Find the MAD of each data set. Then compare their variations.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 23
Answer:
five most-expensive:
$58, $52, $70, $49, $56
No. of observations: 5
Mean = 57
Mean Absolute Deviation: 5.6
5 least-expensive manicures:
$10, $10, $15, $10, $15
No. of observations: 5
Mean = 12
Mean Absolute Deviation: 2.4
The Mean Absolute Deviation of the five most-expensive is greater than the Mean Absolute Deviation of the 5 least-expensive manicures.

Question 24.
You record the lengths of songs you stream. The next song is 276 seconds long. Is 276 an outlier? How does including this value affect the measures of center and the measures of variation? Explain.
Big Ideas Math Answers 6th Grade Chapter 9 Statistical Measures crr 24
Answer:
Given the data,
233, 219, 163, 213, 224, 208, 225, 220, 222, 240, 228, 219, 260, 249, 209, 236,  206
The next song is 276 seconds long.
276 is the outliner.
We can remove 276 from the given data set.
So, there is no effect on the center and the measure of variations.

Statistical Measures Practice Test

Find the mean, median, mode, range, and interquartile range of the data.
Question 1.
5, 6, 4, 24, 10, 6, 9, 8
Answer:
Mean = (5 + 6 + 4 + 24 + 10 + 6 + 9 + 8)/8
= 72/8
= 9
Median:
4, 5, 6, 6, 8, 9, 10, 24
= (6 + 8)/2 = 14/2
= 7
Mode:
6 is the mode
range = (24 – 4)/2
= 20/2
= 10
Range:
Lowest value: 4
Highest value: 24
Range: 20
Interquartile range:
Lower quartile (xL): 5.25
Upper quartile (xU): 9.75
Interquartile range (xU-xL): 4.5

Question 2.
46, 27, 94, 56, 53, 65, 43
Answer:
Given the data,
46, 27, 94, 56, 53, 65, 43
Mean = (46 + 27 + 94 + 56 + 53 + 65 + 43)/7
= 16.75
Median = 15.5
Mode: There is no mode
Range:
Number of observations = 7
Lowest value: 27
Highest value: 94
Range: 67
Interquartile range:
Lower quartile (xL): 43
Upper quartile (xU): 65
Interquartile range (xU-xL): 22

Question 3.
32, 58, 19, 36, 44, 57, 11, 26, 74
Answer:
Given the data,
32, 58, 19, 36, 44, 57, 11, 26, 74
Mean = (32 + 58 + 19 + 36 + 44 + 57 + 11 + 26 + 74)/9
= 357/9
= 39.66
Median:
Arrange the data in ascending or descending order.
11, 19, 26, 32, 36, 44, 57, 58, 74
Median = 36
Mode: There is no mode in the data
Range:
Lowest value: 11
Highest value: 74
Range: 63
Interquartile range:
Lower quartile (xL): 22.5
Upper quartile (xU): 57.5
Interquartile range (xU-xL): 35

Question 4.
36, 24, 49, 32, 37, 28, 38, 40, 39
Answer:
Given the data
36, 24, 49, 32, 37, 28, 38, 40, 39
Arrange the data in ascending or descending order.
24, 28, 32, 36, 37, 38, 39, 40, 49
Mean = (24 + 28 + 32 + 36 + 37 + 28 + 38 + 40 + 49)/9
= 34.66
Median: 37
Mode: There is no mode
Range:
Lowest value: 24
Highest value: 49
Range: 25
Interquartile range:
Lower quartile (xL): 30
Upper quartile (xU): 39.5
Interquartile range (xU-xL): 9.5

Find and interpret the mean absolute deviation of the data.
Question 5.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pt 5
Answer:
Given the data,
312, 286, 196, 201, 158, 225, 206, 192
Mean (x̄): 0.5
Mean Absolute Deviation (MAD): 0.15

Question 6.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pt 6
Answer:
Given the data,
15, 8, 19, 20, 18, 20, 22, 14, 10, 15
Mean (x̄): 16.1
Mean Absolute Deviation (MAD): 3.7

Question 7.
You conduct a survey to answer, “How many Times (minutes)minutes does it take a typical sixth-grade student to run a mile?” The table shows the results. Use the distribution of the data to answer the question.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pt 7
Answer:

Question 8.
The table shows the weights of Alaskan malamute 8181808281dogs at a veterinarian’s office. Which measure of center best represents the weight of an Alaskan malamute? Explain your reasoning.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pt 8
Answer:

Question 9.
The table shows the numbers of guests Numbers of Guests at a hotel on different days.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pt 9
a. Find the range and interquartile range of the data.
b. Use the interquartile range to identify the outlier(s) in the data set. Find the range and interquartile range of the data set without the outlier(s). Which measure did the outlier or outliers affect more?
Answer:

Question 10.
The data sets show the numbers of hours worked each week by two people for several weeks.
Person A: 9, 18, 12, 6, 9, 21, 3, 12
Person B: 12, 18, 15, 16, 14, 12, 15, 18
Compare the measures of center and the measures of variation for each data set. What can you conclude?
Answer:

Question 11.
The table shows the lengths of several bearded dragons captured for a study. Find the mean, median, and mode of the data in centimeters and in inches. How does converting to inches affect the mean, median, and mode?
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures pt 11
Answer:

Statistical Measures Cumulative Practice

Question 1.
Which statement can be represented by a negative integer?
A. The temperature rises 15 degrees.
B. A hot-air balloon ascends 450 yards.
C. You earn $50 completing chores.
D. A submarine submerges 260 feet.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 1
Answer: D. A submarine submerges 260 feet.

Question 2.
What is the height h (in inches) of the prism?
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 2
Answer:
h = v/lw
h = 5850/30(12 1/4)
h = 5850/(30 × 12.25)
h = 5850/367.50
h = 15.91 inches

Question 3.
Which is the solution of the inequality \(\frac{2}{3}\)x < 6?
F. x < 4
G. x < 5\(\frac{1}{3}\)
H. x < 6\(\frac{2}{3}\)
I. x < 9
Answer: I. x < 9

Question 4.
The number of hours that each of six students spent reading last week is shown in the bar graph.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 4
For the data in the bar graph, which measure is the?
A. mean
B. median
C. mode
D. range
Answer: C. mode

Explanation:
In the above bar graph, 10 is repeated two ways.
Thus the correct answer is option C.

Question 5.
Which list of numbers is in order from least to greatest?
F. – 5.41, – 3.6, – 3.2, – 3.06, – 1
G. – 1, – 3.06, – 3.2, – 3.6, – 5.41
H. – 5.41, – 3.06, – 3.2, – 3.6, – 1
I. – 1, – 3.6, – 3.2, – 3.06, – 5.41
Answer: F. – 5.41, – 3.6, – 3.2, – 3.06, – 1

Explanation:
We have to write the numbers from least to greatest
The negative sign with the highest number will be the least.
– 5.41, – 3.6, – 3.2, – 3.06, – 1
Thus the correct answer is option F.

Question 6.
What is the mean absolute deviation of the data shown in the dot plot, rounded to the nearest tenth?
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 6
A. 1.4
B. 3
C. 3.2
D. 57.
Answer:
Data from the dot plot
5, 5, 4, 4, 6, 1
Number of observations: 6
Mean = 4.166
Mean absolute deviation = 1.66
Thus the correct answer is option A.

Question 7.
A family wants to buy tickets to a theme park. There are separate ticket prices for adults and children.
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 7
Which expression represents the total cost (in dollars) for adult tickets c and child tickets?
F. 600 (a + c)
G. 50(a × c)
H. 30a + 20c
I. 30a × 20c
Answer: H. 30a + 20c

Question 8.
The dot plot shows the leap distances (in feet) of a tree frog. How many leaps were recorded?
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 8
Answer: 7 leaps were recorded

Question 9.
What is the value of the expression when a = 6 and b = 14?
0.8a + 0.02b
A. 0.4828
B. 0.8814
C. 5.08
D. 16.4
Answer:
Given the expression,
0.8a + 0.02b
a = 6
b = 14
0.8(6) + 0.02(14)
4.8 + 0.28
= 5.08
Thus the correct answer is option C.

Question 10.
Which property was not used to simplify the expression?
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 10
F. Distributive Property
G. Associative Property of Addition
H. Multiplication Property of One
I. Commutative Property of Multiplication
Answer: I. Commutative Property of Multiplication

Question 11.
What are the coordinates of Point P?
Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures cp 11
A. (- 3, – 2)
B. (3, – 2)
C. (- 2, – 3)
D. (-2, 3)
Answer: B. (3, – 2)

Explanation:
By seeing the above graph we can write the ordered pair P.
the x-axis is on 3 and the y-axis is on -2
Thus the correct answer is option B.

Question 12.
Create a data set with 5 numbers that has the following measures.
Think
Solve
Explain
• a mean of 7
• a median of 9
Explain how you created your data set.
Answer:
The data set is 3, 2, 9, 1, 20

Final Words:

I hope the article regarding the Big Ideas Math Answers Grade 6 Chapter 9 Statistical Measures is helpful for the students who are lagging in this concept. Feel free to post the comments if you have any doubts regarding the methods or answers. We will try to clarify your doubts as early as possible.

Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000

Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000

Hey guys are you in search of diverse opportunities to develop your problem-solving skill? We have the best solution to it, just practice all Big Ideas Math 2nd Grade Answer Key Chapter 8 Count and Compare Numbers to 1,000. These Big Ideas Math Book 2nd Grade Answer Key Chapter 8 Count and Compare Numbers to 1,000 are prepared in a fun-learning way like mathematical practices through engaging activities such as games, songs, literature-based exercises, etc. so to connect with elementary school mathematics. Make the most out of the Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 to prepare efficiently by clearing all your queries while practicing.

Big Ideas Math Book 2nd Grade Answer Key Chapter 8 Count and Compare Numbers to 1,000

Its a Free Easy Access Student Edition of Big Ideas Math Book 2nd Grade Answer Key Chapter 8 Count and Compare Numbers to 1,000. Chapter wise are provided below in PDF links. So, Students are notified to improve their math skills & problem-solving skills by referring to these chapter-wise Big Ideas Math Answer Grade 2 Chapter 8 Count and Compare Numbers to 1,000. Also, you all can make use of these Big Ideas Math 2nd Grade Answer Key Chapter 8 Count and Compare Numbers to 1,000 for Homework Help & complete all your assessments properly.

Count and Compare Numbers to 1,000 Vocabulary

Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 1
Organize It
Use the review words to complete the graphic organizer.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 2
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-and-Compare-Numbers-to-1,000-Vocabulary

Define It

Use your vocabulary cards to complete the puzzle.

Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 3

Chapter 8 Vocabulary cards

Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 4
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 5

Lesson 8.1 Count to 120 in Different Ways

Explore and Grow

Start at 5. Skip count by fives. Circle the numbers you count. Start at 10. Skip count by tens. Color the numbers you count.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 6
What patterns do you notice?
____________________
____________________
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8 Count-Compare-Numbers-to-1,000-Lesson-8.1-Count-to-120-in Different-Ways-Explore-and-Grow
In column 5 we notice the pattern of count by tens and in column 10 we notice the pattern of count by tens.

Show and Grow

Question 1.
Count by ones.
35, 36, 37, ___, ____, ___, ___, ___
Answer:
35, 36, 37, 38, 39, 40, 41, 42 .

Question 2.
Count by fives.
55, 60, 65, __, ___, ___, ___, ___
Answer:
55, 60, 65, 70, 75, 80, 85, 90

Question 3.
Count by tens.
21, 31, 41, ___, __, ___, ___, ___
Answer:
21, 31, 41, 51, 61, 71, 81, 91 .

Apply and Grow: Practice

Count by ones.

Question 4.
57, 58, 59, __, ___, ___, ___, ___
Answer:
57, 58, 59, 60, 61, 62, 63, 64

Count by fives.

Question 6.
35, 40, 45, __, ___, ___, __, ___
Answer:
35, 40, 45, 50, 55, 60, 65, 70

Question 5.
__, 106, __, 108, __, ___, ___
Answer:
105, 106, 107, 108, 109, 110, 111

Count by fives.

Question 6.
35, 40, 45, __, ___, ___, ___, ___
Answer:
35, 40, 45, 50, 55, 60, 65, 70

Question 7.
__, 80, __, 90, __, __, ___
Answer:
70, 80, 90, 100, 110, 120 .

Count by tens.

Question 8.
12, 22, 32, __, ___, __, ___, __
Anwer:
12, 22, 32, 42, 52, 62, 72, 82 .

Question 9.
__, 50, __, 70, __, __, ___
Answer:
40, 50, 60, 70, 80, 90, 100 .

Question 10.
Number Sense
Newton counts by ones from 47 to 53. Which numbers does he count?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 6.1
Answer:
counts by ones from 47 to 53 are :
47, 48, 49, 50, 51, 52, 53 .
numbers does he count are 49 and 52 numbers

Question 11.
Number Sense
Descartes counts by fives from 90 to 115. Which numbers does he count?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 7
Answer:
counts by fives from 90 to 115 are :
90, 95, 100, 105, 110, 115 .
numbers does he count are 105 and 110 .

Think and Grow: Modeling Real Life

Newton has 65 points. He captures small aliens worth 5 points. Descartes has 25 points. He captures large aliens worth 10 points.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 8
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 9
Answer:
Number of points Newton have = 65
Number of points for small aliens = 5.
Number of aliens did Newton have = 65 / 5 = 13.

Number of points Descartes have = 25
Number of points for Large aliens = 10.
Number of aliens did Descartes have = 25 / 10 = 2.5
Newton have more aliens than Descartes.so Descartes needs more aliens .

Show and Grow

Question 12.
Newton has 55 points. He collects gold coins worth 10 points. Descartes has 70 points. He collects silver coins worth 5 points. Who needs to collect more coins to reach 100 points?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 10
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 11
Answer:
Number of points Newton have = 55 points
he collects gold coins worth = 10 points each .
for 100 points newton requires 45 points
Number of coins required for 45 points for Newton= 45/ 10 = 4.5 coins.

Number of points Descartes have = 70 points
he collects silver coins worth = 5 points each .
for 100 points Descartes requires 30 points
Number of coins required for 30 points for Descartes= 30/ 5 = 6 coins.
Descartes requires more 6 coins to reach 100 points .

Question 13.
You and your friend count from 30 to 70. You count by fives. Your friend counts by tens. Who says more numbers? Explain.
Answer:
Count by fives:( by me)
30, 35, 40, 45, 50, 55, 60, 65, 70 = total 9 numbers.
Count by tens:( my friend)
30, 40, 50, 60, 70 = total 5 numbers.
I say more numbers than my friend .

Count to 120 in Different Ways Homework & Practice 8.1

Count by ones.

Question 1.
63, 64, 65, __, __, ___, ___, ___
Answer:
63, 64, 65, 66, 67, 68, 69, 70 .

Question 2.
__, 112, __, 114, __, __, ___
Answer:
111, 112, 113, 114, 115, 116, 117 .

Count by fives.

Question 3.
10, 15, 20, __, __, ___, __, ___
Answer:
10, 15, 20, 25, 30, 35, 40, 45 .

Question 4.
__, 95, __, 105, __, __, ___
Answer:
90, 95, 100, 105, 110, 115, 120 .

Count by tens.

Question 5.
44, 54, 64, __, __, __, ___, __
Answer:
44, 54, 64, 74, 84, 94, 104 .

Question 6.
__, 20, __, 40, __, __, __
Answer:
10, 20, 30, 40, 50, 60, 70 .

Question 7.
YOU BE THE TEACHER
Newton counts by fives. Is he correct? Explain.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 12
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 13
Answer:
No, Count by fives means 5, 10, 15, 20, 25, 30 and so on …..
As per the above count 5, 15, 25, 35, 45, 55 they are count by tens as there is 10 differences between the sequence of numbers.

Question 8.
Modeling Real Life
Who needs to make more shots to earn 50 points?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 14

Answer:
Newton
Number of points with Newton = 30 .
Newton requires more 20 points to make it 50 points
Points for one shot = 5 .
Number of shots required for Newton = 20 / 5 = 4 shots.

Descartes
Number of points with Descartes = 20 .
Descartes requires more 30 points to make it 50 points
Points for one shot = 10 .
Number of shots required for Descartes = 30 / 10 = 3 shots.

Therefor Newton needs to make more shots than Descartes .

Review & Refresh

Question 9.
34 – 16 = ?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 15
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-to-120-Different-Ways-Homework-Practice-8.1-Question-9

Question 10.
75 – 32 = ?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 16
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-to-120-Different-Ways-Homework-Practice-8.1-Question-10

Question 11.
93 – 28 = ?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 17
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-to-120-Different-Ways-Homework-Practice-8.1-Question-11

Lesson 8.2 Count to 1,000 in Different Ways

Explore and Grow

Count by hundreds to 1,000.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 18
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Lesson-8.2-Count-to-1,000-Different Ways-Explore-Grow-1

Count by tens to 1,000.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 19
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Lesson-8.2-Count-to-1,000-Different Ways-Explore-Grow-2
Count by fives to 1,000.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 20
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Lesson-8.2-Count-to-1,000-Different Ways-Explore-Grow-3
Count by ones to 1,000.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 21
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Lesson-8.2-Count-to-1,000-Different Ways-Explore-Grow-4

Show and Grow

Question 1.
Count by fives.
675, 680, 685, __, __, __, __, ___
Answer:
675, 680, 685, 690, 695, 700, 705, 710 .

Question 2.
Count by tens.
850, 860, 870, __, __, __, __, ___
Answer:
850, 860, 870, 880, 890, 900, 910, 920 .

Question 3.
Count by hundreds.
100, 200, 300, __, __, __, __, ___
Answer:
100, 200, 300, 400, 500, 600, 700, 800 .

Apply and Grow: Practice

Count by fives.

Question 4.
520, 525, 530, __, __, __, __, ___
Answer:
520, 525, 530, 535, 540, 545, 550, 555 .

Question 5.
875, 880, __, __, __, __, ___
Answer:
875, 880, 885, 890, 895, 900, 905 .

Count by tens.

Question 6.
600, 610, 620, __, __, __, __, ___
Answer:
600, 610, 620, 630, 640, 650, 660, 670 .

Question 7.
460, 470, __, __, __, __, ___
Answer:
460, 470, 480, 490, 500, 510, 520 .

Count by hundreds.

Question 8.
200, 300, 400, __, __, __, __, ___
Answer:
200, 300, 400, 500, 600, 700, 800, 900 .

Question 9.
400, 500, __, __, __, __, __
Answer:
400, 500, 600, 700, 800, 900, 1000 .

Question 10.
DIG DEEPER!
Newton counts by hundreds. Find the missing number. Think: How do you know?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 22
Answer:
The missing number is 0  as the count start from 0, 100, 200, 300, 400, 500 Each number is 100 more than the previous number.

Question 11.
Structure
Did Descartes count by tens or by hundreds? Think: How do you know?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 23
Answer:
It is count by tens as Each number is 10 more than the previous number .

Think and Grow: Modeling Real Life

A summer camp leader has 240 T-shirts. He buys 6 more colors with 10 shirts in each color. How many T-shirts does he have now?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 24
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 25
Answer:
Number of T-Shirts = 240.
Number of T-shirts were bought = 6 X 10 ( 6 different colors ) = 60 T-shirts .
Total Number of T-Shirts = 240 + 60 = 300 .

Show and Grow

Question 12.
You have 100 bracelets. You buy 5 more boxes with 100 bracelets in each box. How many bracelets do you have now?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 26
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 27
Answer:
Number of Bracelets = 100.
Number of Boxes bought = 5 x 100 = 500 bracelets.
Total Number of Bracelets = 100 + 500 = 600 bracelets.

Question 13.
You and your friend count from 370 to 420. You count by tens. Your friend counts by fives. Who says more numbers? Explain.
_________________________
_________________________
Answer:
Count by Tens:( by me)
370, 380, 390, 400, 410, 420 . = total 6 numbers.
Count by fives:( my friend)
370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420 = total 11 numbers.
My friends say more numbers than me .

Count to 1,000 in Different Ways Homework & Practice 8.2

Count by fives.

Question 1.
445, 450, 455, ___, __, __, __, ___
Answer:
445, 450, 455, 460, 465, 470, 475, 480 .

Question 2.
770, 775, __, __, __, __, ___
Answer:
770, 775, 780, 785, 790, 795, 800,

Count by tens.

Question 3.
520, 530, 540, __, __, __, __, __
Answer:
520, 530, 540, 550, 560, 570, 580, 590 .

Question 4.
660, 670, __, __, __, __, ___
Answer:
660, 670, 680, 690, 700, 710, 720 .

Count by Hundreds.

Question 5.
300, 400, 500, __, __, __, __, ___
Answer:
300, 400, 500, 600, 700, 800, 900, 1000.

Question 6.
200, 300, __, __, __, __, ___
Answer:
200, 300, 400, 500, 600, 700, 800 .

Review & Refresh

Question 7.
DIG DEEPER!
Newton starts at 950 and counts to 1,000 by fives. Complete the number line to show the last 6 numbers he counts.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 28
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Count-to-1,000-Different-Ways-Homework-Practice-8.2-Question-7

Question 8.
Modeling Real Life
A carnival worker has 380 stuffed animals. She buys 6 more boxes with 5 stuffed animals in each box. How many stuffed animals does she have now?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 29
Answer:
Number of stuffed animals = 380 .
Number of animals bought = 6 x 5 = 30.
Total Number of stuffed animals = 380 + 30 = 410 Animals .

Question 9.
Modeling Real Life
A water park shop owner has 100 goggles. He buys 4 more colors with 100 goggles in each color. How many goggles does the shop owner have now?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 30
Answer:
Number of Goggles = 100.
Number of goggles bought = 4 x 100 = 400
Total Number of Goggles = 100 + 400 = 500 Goggles .

Question 10.
You see 14 geese in a pond. 17 more join them. Then you see 11 more fly to the pond. How many geese do you see in all?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 31
Answer:
Number of geese in a pond = 14.
Number of geese joined = 17 .
Total geese’s = 14 + 17 = 31 .
Number of geese’s flew to pond = 11 .
Total Geese’s = 31 + 11 = 42 .

Lesson 8.3 Place Value Patterns

Explore and Grow

What patterns do you see in the shaded row and column? Use the patterns to complete the chart.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 32
Answer:
The pattern in Rows = Count by ones.
The pattern in Columns = Count by Tens.
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Lesson-8.3-Place-Value-Patterns-Explore-Grow

Show and Grow

Use place value to find the missing numbers.

Question 1.
485, 486, 487, __, __, ___, ___
Answer:
485, 486, 487, 488, 489, 490, 491 .

Question 2.
612, 622, 632, __, __, ___, ___
Answer:
612, 622, 632, 642, 652, 662, 672 .

Question 3.
267, 277, __, 297, ___, 317, __
Answer:
267, 277, 287, 297, 307, 317, 327 .

Question 4.
101, 201, ___, 401, __, __, ___
Answer:
101, 201, 301, 401, 501, 601, 701 .

Apply and Grow: Practice

Use place value to find the missing numbers.

Question 5.
324, 325, ___, 327, __, __, ___
Answer:
324, 325, 326, 327, 328, 329, 330 .

Question 6.
194, 294, __, 494, __, __, ___
Answer:
194, 294, 394, 494, 594, 694, 794 .

Question 7.
463, 473, __, 493, __, __, __
Answer:
463, 472, 483, 493, 503, 513, 523 .

Question 8.
232, 332, __, 532, __, ___, __
Answer:
232, 332, 432, 532, 632, 732, 832 .

Question 9.
985, 986, __, 988, __, __, __
Answer:
985, 986, 987, 988, 989, 990 .

Question 10.
751, 761, __, 781, __, __, __
Answer:
751, 761, 771, 781, 791, 801, 811 .

Question 11.
606, 607, __, 609, __, __, __
Answer:
606, 607, 608, 609, 700, 701, 702 .

Question 12.
Repeated Reasoning
Use place value to describe each pattern.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 33
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Lesson-8.3-Place-Value-Patterns-Apply-Grow-Practice-Question-12

Think and Grow: Modeling Real Life

There are 273 tickets in a bin. Some more are put in the bin. Now there are 973. How many groups of 100 tickets were put in the bin?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 34
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 35
Answer:

Number of tickets in bin = 273.
Number of tickets added in bin = X.
Total Number tickets in bin now = 973 = 273 + X
X = 973 – 273 = 700 .
Number of groups = 700/100 = 7 (Each group contains 100 tickets) .
Therefore 7 groups of 100 tickets were put in bin .

Show and Grow

Question 13.
You have 338 pennies in a jar. You put more in the jar. Now there are 388. How many groups of 10 pennies were put in the jar?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 36

Answer:
Number of pennies =338.
Number of pennies added = X.
Total Number of pennies = 388 = 338 + X.
X= 388 – 328 = 50.
Number of groups of 10 pennies were put in the jar = 50 / 10 = 5.

Question 14.
DIG DEEPER!
There are 410 people at a show. 8 more rows of seats get filled. Now there are 490 people. How many people can sit in each row?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 37
Explain how you solved.
______________
______________
Answer:
Number of people = 410 .
Number of people added = X.
Total Number of people = 490.
490=410 + X.
X = 490 – 410 = 80 .
Number of people added = 80 .
Number of Rows = 8.
Number of people in each row = 80 /8 = 10.

Place Value Patterns Homework & Practice 8.3

Use place value to find the missing numbers.

Question 1.
710, 711, 712, __, __, __, ___
Answer:
710, 711, 712, 713, 714, 715, 716 .

Question 2.
822, 832, 842, __, __, __, __
Answer:
822, 832, 842, 852, 862, 872, 882 .

Question 3.
325, 425, 525, __, __, __, __
Answer:
325, 425, 525, 625, 725, 825, 925 .

Question 4.
669, 679, __, 699, __, __, ___
Answer:
669, 679, 689, 699, 709, 719, 729 .

Question 5.
534, 535, __, 537, __, __, __
Answer:
534, 535, 536, 537, 538, 539 , 540

Question 6.
368, 468, __, 668, __, __, ___
Answer:
368, 468, 568, 668, 768, 868, 968 .

Question 7.
YOU BE THE TEACHER
Newton says the hundreds digit in the numbers shown increases by 1. Is he correct? Explain.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 38

Answer:
No, There is increase in the tens place not in hundreds place .Each Number is 10 more than the previous number so it is count by tens.

Question 8.
Modeling Real Life
A farmer has 467 cornstalks. The farmer grows some more. Now there are 967 cornstalks. How many groups of 100 cornstalks did the farmer add?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 39

Answer:
Number of cornstalks = 467 .
Number of cornstalks grown =X
Total Number of cornstalks = 967.
467 + X =967.
X = 967- 467 = 500.
Number of cornstalks grown = 500 .
Number of groups of 100 cornstalks added = 500/100 = 5.

Question 9.
DIG DEEPER!
There are 250 people at a party. 3 more tables get filled. Now there are 280 people. How many people can sit at each table?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 40

Answer:
Number of people in the party = 250 .
Number of more people added = X.
Total Number of people in the party = 280 .
250 + X = 280 .
X = 280- 250 = 30 .
Number of more people added = 30 .
Number of tables got filled with added people = 3.
Number of people in each table = 30 / 3 = 10 .

Review & Refresh

Question 10.
8 + 4 = __
Answer:
12.

Question 11.
15 – 8 = __
Answer:
7.

Question 12.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 41

Answer:
10.
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Place-Value-Patterns-Homework-Practice-8.3-Question-12

Question 13.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 42

Answer:
6
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Place-Value-Patterns-Homework-Practice-8.3-Question-13

Question 14.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 43

Answer:
13.
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Place-Value-Patterns-Homework-Practice-8.3-Question-14

Question 15.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 44
Answer:
9 .
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Place-Value-Patterns-Homework-Practice-8.3-Question-15

Lesson 8.4 Find More or Less

Explore and Grow

Model 253. Use your model to complete the sentences.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 45

1 more than 253 is __.
1 less than 253 is __.
10 more than 253 is __.
10 less than 253 is __.
100 more than 253 is __.
100 less than 253 is __.
Answer:
1 more than 253 is 254.
1 less than 253 is 252.
10 more than 253 is 263.
10 less than 253 is 243.
100 more than 253 is 353.
100 less than 253 is 153.

Show and Grow

Question 1.
10 more than 452 is __.
Answer:
10 more than 452 is 462.

Question 2.
10 less than 813 is __.
Answer:
10 less than 813 is 803..

Question 3.
100 less than 729 is __.
Answer:
100 less than 729 is 629.

Question 4.
100 more than 386 is __.
Answer:
100 more than 386 is 486.

Apply and Grow: Practice

Question 5.
10 more than 571 is __.
Answer:
10 more than 571 is 581.

Question 6.
10 less than 333 is __.
Answer:
10 less than 333 is 323.

Question 7.
100 more than 604 is __.
Answer:
100 more than 604 is 704.

Question 8.
100 less than 592 is __.
Answer:
100 less than 592 is 492.

Question 9.
1 more than 934 is __.
Answer:
1 more than 934 is 935.

Question 10.
1 less than 101 is __.
Answer:
1 less than 101 is 100.

Question 11.
10 less than 286 is __.
Answer:
10 less than 286 is 276.

Question 12.
1 more than 467 is __.
Answer:
1 more than 467 is 468.

Question 13.
10 more than 763 is __.
Answer:
10 more than 763 is 773.

Question 14.
100 less than 846 is __.
Answer:
100 less than 846 is 746.

Question 15.
1 less than 999 is __.
Answer:
1 less than 999 is 998.

Question 16.
100 more than 28 is __.
Answer:
100 more than 28 is 128.

Question 17.
100 less than 135 is __.
Answer:
100 less than 135 is 35.

Question 18.
100 more than 900 is __.
Answer:
100 more than 900 is 1000.

Question 19.
Number Sense
Complete each sentence.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 46
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Lesson-8.4-Find-More-Less-Question-19

Think and Grow: Modeling Real Life

An orange tree has 639 oranges. A lemon tree has 100 fewer lemons. How many lemons does the tree have?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 47

Answer:
Number of Oranges = 639.
Number of Lemons = 639 – 100 =539.

Show and Grow

Question 20.
A history book has 197 pictures. A science book has 10 more pictures. How many pictures are in the science book?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 48
Answer:
Number of pictures in history books = 197 .
Number of pictures in science book = 197 + 10  = 207.

Question 21.
DIG DEEPER!
A boat puzzle has 525 pieces. A bird puzzle has 100 more than the boat puzzle. A space puzzle has 10 fewer than the bird puzzle. How many puzzle pieces does the space puzzle have?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 49
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 50
Answer:
Number of puzzles in boat puzzle = 525 .
Number of puzzles in bird puzzle = 100 + 525 = 625.
Number of puzzles in space puzzle = 625 – 10 = 615 .

Question 22.
DIG DEEPER!
You have 398 points. Newton has 100 fewer than you. Descartes has 10 more than Newton. How many points does Descartes have?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 51
Answer:
Number of points = 398 .
Number of points Newton have = 398 – 100 = 298 .
Number of points Descartes have = 298 + 10 = 308 .

Find More or Less Homework & Practice 8.4

Question 1.
10 more than 106 is __.
Answer:
10 more than 106 is 116.

Question 2.
10 less than 467 is __
Answer:
10 less than 467 is 457.

Question 3.
100 more than 321 is __.
Answer:
100 more than 321 is 421.

Question 4.
100 less than 945 is __.
Answer:
100 less than 945 is 845.

Question 5.
1 more than 513 is __.
Answer:
1 more than 513 is 514.

Question 6.
1 less than 899 is __.
Answer:
1 less than 899 is 898.

Question 7.
1 less than 264 is __.
Answer:
1 less than 264 is 263.

Question 8.
100 more than 555 is __.
Answer:
100 more than 555 is 655.

Question 9.
1 more than 852 is __.
Answer:
1 more than 852 is 853.

Question 10.
100 less than 573 is __.
Answer:
100 less than 573 is 473.

Question 11.
10 less than 314 is __
Answer:
10 less than 314 is 304.

Question 12.
10 more than 687 is __
Answer:
10 more than 687 is 697.

Question 13.
Structure
Complete the table.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 52

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Find-More-Less-Homework-Practice-8.4-Question-13

Question 14.
Number Sense
Complete the sentence.
__ is 10 less than 546 and 10 more than __.
Answer:
536 is 10 less than 546 and 10 more than 556.

Question 15.
Modeling Real Life
Your magic book has 163 tricks. Your friend’s magic book has 100 more tricks than yours. How many tricks does your friend’s magic book have?
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 53
Answer:
Number of tricks in my magic books = 163 .
Number of tricks in my friends magic books = 100+163 = 263.

Question 16.
DIG DEEPER!
You have 624 songs. Newton has 100 fewer than you. Descartes has 10 more than Newton. How many songs does Descartes have?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 54

Answer:
Number of songs = 624.
Number of songs Newton have = 624 – 100 = 524.
Number of songs Descartes have = 524 + 10  = 534 .

Review & Refresh

Question 17.
A bookcase has 5 shelves. There are 2 stuffed animals on each shelf. How many stuffed animals are there in all?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 55
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 56
Answer:
Number of shelves = 5.
Number of stuffed animals in each shelf = 2
Total Number of stuffed animals in each 5 shelves = 2 added 5 times.
2+2+2+2+2 = 10 animals.

Lesson 8.5 Compare Numbers Using Symbols

Explore and Grow

Make a quick sketch of each number. Circle the greater number.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 57
How do you know which number is greater?
____________________
____________________
Answer:

When comparing the values of two numbers, you can use a number line to determine which number is greater. The number on the right is always greater than the number on the left. In the example Above, you can see that 472 is greater than 439 because 472 is to the right of 439 on the number line.

Show and Grow

Question 1.
Compare.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 58
Answer:
652 > 614.

Apply and Grow: Practice

Compare

Question 2.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 59
Answer:
324 > 317.

Question 3.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 60
Answer:
26 < 206 .

Question 4.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 61
Answer:
546 < 564 .

Question 5.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 62
Answer:
931 > 842.

Question 6.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 63
Answer:
700 + 30 + 5 = 735.
735 = 735 .

Question 7.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 64
Answer:
400 + 20 = 420.
412 < 420.

Question 8.
Reasoning
Find the number that will make all three comparisons true.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 65
Answer:
105.

Question 9.
YOU BE THE TEACHER
Is Newton correct? Explain.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 66
Answer:
625 < 631.
The given number is a 3-digit number .In 3-digit number Comparison First check the hundred place both the numbers having 6 in hundred place . so then go to the tens place in 625 we have 2 in tens place and in 631 we have 3 in tens place so 3 is greater than 2. so 631 is greater than 625.

Question 10.
There are 125 kids in a taekwondo club. There are 135 kids in a soccer club. Which club has fewer kids?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 67
Answer:
Number of kids in taekwondo club = 125 .
Number of kids in soccer club = 135.
Kids in taekwondo club are 10 fewer than soccer club .

Think and Grow: Modeling Real Life

Newton reads 200 pages on Monday, 70 on Tuesday, and 9 on Wednesday. Descartes reads 297 pages. Who reads more pages in all?
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 68
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 69
Answer:
Number of pages read by Newton on Monday = 200.
Number of pages read by Newton on Tuesday = 70.
Number of pages read by Newton on Wednesday =9.
Total pages read by Newton all 3 days = 200 + 70 + 9 = 279.
Total pages read by Descartes = 297.
Descartes reads more pages.
279 < 297 .

Show and Grow

Question 11.
Newton counts train cars. The train has 100 boxcars, 40 tank cars, and 4 locomotives. Descartes counts a train with 142 cars. Who counts more cars in all?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 70
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 70.1
Answer:
Total cars counted by Newton = 100 + 40 = 140.
Total cars counted by Descartes = 142.
142 > 140 .
Descartes counts more cars .

Question 12.
You have 221 coins in your piggy bank. Your friend has 219 coins. Who has fewer coins?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 71
Answer:
Number of coins in my piggy bank = 221.
Number of coins my friend have = 219.
My friend have 2 coins fewer than me .

Question 13.
DIG DEEPER!
652 people go to a play on Friday. 625 people go on Saturday. 655 people go on Sunday. On which day are there fewer than 650 people at the play?
Answer:
People played on Friday = 652.
People played on Saturday =625
People played on Sunday =655.
On Saturday 25 people are fewer than 650 people at the play .

Compare Numbers Using Symbols Homework & Practice 8.5

Compare

Question 1.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 72
Answer:
923 > 854.

Question 2.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 73
Answer:
386 < 389.

Question 3.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 74
Answer:
406 = 406 .

Question 4.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 75
Answer:
621 > 63.

Question 5.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 76
Answer:
746 < 752 .

Question 6.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 77
Answer:
235 > 130.

Question 7.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 78
Answer:
500 + 60 + 1 = 561.
562 > 561 .

Question 8.
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 79
Answer:
100 + 10 = 110.
110 = 110.

Question 9.
DIG DEEPER!
What is Descartes’s number?

  • It is less than 300.
  • It is greater than 200.
  • The ones digit is 6 less than 10.
  • The tens digit is 2 more than the ones digit.

Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 80
Answer:
lies between 200 – 300.
ones digit = 10 – 6 = 4.
Tens digit = 4 + 2 = 6.
264.

Question 10.
There are 428 pages in a science book. There are 424 pages in a math book. Which book has more pages?
Big Ideas Math Answers 2nd Grade Chapter 8 Count and Compare Numbers to 1,000 81
Answer:
Number of pages in science book = 428
Number of pages in Math book = 424 .
science – 428 > 424 – math
Science book has more pages.

Question 11.
Modeling Real Life
A concession stand sells 300 bags of popcorn on Saturday, 50 on Sunday, and 4 on Monday. They sell 345 drinks. Did they sell more bags of popcorn or drinks?
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 82
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 83
Total Number of popcorn sold all 3 days = 300 + 50 + 4 = 354.
Number of drinks sold = 345 .
354 > 345 .
popcorn bags are sold more.

Question 12.
DIG DEEPER!
Newton climbs 136 stairs on Friday. He climbs 132 on Saturday. He climbs 128 on Sunday. On which day does he climb more than 134 stairs?
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 84
Answer:
Friday = 136.
Saturday = 132.
Sunday = 128 .
On Friday he climbed 136 stairs more than 134 stairs.

Review & Refresh

Find the difference. Use addition to check your answer.

Question 13.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 85

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Compare-Numbers-Using-Symbols-Homework-Practice-8.5-Question-13

Question 14.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 86
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000- Compare-Numbers-Using-Symbols-Homework-Practice-8.5-Question-14

Lesson 8.6 Compare Numbers Using a Number Line

Explore and Grow

Identify a number that is less than 538. Identify a number that is greater than 538. Model the numbers on the number line.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 87

Explain how you know.
____________________
____________________
____________________
Answer:
The number on the right is always greater than the number on the left.
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Lesson-8.6-Compare-Numbers-Using-Number-Line-Explore-Grow

Show and Grow

Compare
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 88

Question 1.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 89
Answer:
527 > 525.

Question 2.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 90
Answer:
521 < 524 .

Question 3.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 91
Answer:
528 = 528 .

Question 4.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 92
Answer:
530 > 520

Question 5.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 93
Answer:
522 < 523

Question 6.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 94
Answer:
529 > 526

Write a number that makes the statement true.

Question 7.
372 < __
Answer:
372 < 373

Question 8.
195 > __
Answer:
195 > 190

Apply and Grow: Practice

Compare.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 95

Question 9.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 96
Answer:
714 = 714

Question 10.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 97
Answer:
720 > 710

Question 11.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 98
Answer:
718 > 717

Question 12.
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 99
Answer:
711 < 713

Write a number that makes the statement true.

Question 13.
736 = __
Answer:
736 = 736 .

Question 14.
461 > __
Answer:
461 > 460

Question 15.
__ < 295
Answer:
290 < 295

Question 16.
__ > 573
Answer:
574> 573

Question 17.
Logic
Is Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 100 greater than or less than Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 101? Explain.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 102
Answer:
The Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 101 is greater than Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 100.As the values goes towards 100. The Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 101 is close to 100 than Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 100.so Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 101has higher value than Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 100. Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 101 > Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 100.

Question 18.
DIG DEEPER!
What number might Newton be thinking?
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 103
Answer:
342<350<356

Think and Grow: Modeling Real Life

Order the race numbers from least to greatest.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 104
Model:
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 105
Order from least to greatest: __, __, __, __
Your race number is greater than all of the other numbers but less than 900. What is a possible race number for you?
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 105.1
Answer:
Order from least to greatest : 856 , 865 , 868 , 876 .
Possible race number = 878.

Show and Grow

Question 19.
Order the race times from least to greatest.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 106
DIG DEEPER!
Your time is less than all of the other times but greater than 320 seconds. What is a possible time for you?
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 107
Answer:
The Race times from least to greatest = 329,  335, 340, 342 .
320<329.
Possible time 325

Compare Numbers Using a Number Line Homework & Practice 8.6

Compare.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 108

Question 1.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 109
Answer:
450 < 460

Question 2.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 110
Answer:
459 > 457

Question 3.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 111
Answer:
455 > 451

Question 4.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 112
Answer:
456 = 456

Question 5.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 113
Answer:
455 > 454

Question 6.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 114
Answer:
452 < 453

Write a number that makes the statement true.

Question 7.
529 > __
Answer:
529 > 528

Question 8.
815 < __
Answer:
815 < 820

Question 9.
__ < 142
Answer:
140 < 142

Question 10.
__ = 364
Answer:
364 = 364

Question 11.
YOU BE THE TEACHER
Is Descartes correct? Explain.
______________
______________
______________
Big Ideas Math Answers Grade 2 Chapter 8 Count and Compare Numbers to 1,000 115
Answer:
986 < 987 .
The numbers which move to the right of the number line will increase in value .
The number on the right is always greater than the number on the left.
so the number 987 is greater than 986 .

Question 12.
DIG DEEPER!
I am not greater than 243. I am not less than 243. What number am I? Explain how you know.
Answer:
243

Question 13.
Modeling Real Life
Order the numbers from least to greatest.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 116
Answer:
The numbers from least to greatest = 675 , 679, 689, 698 .

DIG DEEPER!
Your car’s number is greater than all of the others but less than 705. What is a possible number for your car?

Review & Refresh

Question 14.
Circle the shapes with flat surfaces that are circles.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 117

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Compare-Numbers-Using-Number-Line-Homework-Practice 8.6-Question-14

Count and Compare Numbers to 1,000 Performance Task

The table shows the number of each type of fish in a tank.

Question 1.
Complete the table.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 118
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Performance-Task-Question-1
Question 2.
Compare the numbers of fish.
Big Ideas Math Solutions Grade 2 Chapter 8 Count and Compare Numbers to 1,000 119

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Performance-Task-Question-2

Question 3.
All of the purple, green, and pink fish are moved to a new exhibit. How many fish are left in the tank?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 120

Total Number of fishes = 351 + 529 + 312 + 458 + 312 = 1962.
Number of fishes moved to new exhibit = 312 + 529 + 351 = 1192
Number of fishes left = 1962 – 1192 = 770.

Question 4.
A school of 24 fish swim in an array. Draw an array for the fish.
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Performance-Task-Question-4

Count and Compare Numbers to 1,000 Activity

Number Boss

To Play: Place Number Cards 0–9 in a pile. Each player flips 3 cards and makes a three-digit number. Compare the numbers. The player with the greater number takes both sets of cards. If the numbers are equal, flip cards again. The person with the greater number takes all of the cards. Repeat until all of the cards have been used.

Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 121

Count and Compare Numbers to 1,000 Chapter Practice

8.1 Count to 120 in Different Ways

Question 1.
Count by ones.
113, 114, 115, __, __, __, __, ___
Answer:
113, 114, 115, 116, 117, 118, 119, 120

Question 2.
Count by fives.
25, 30, 35, __, __, __, __, ___
Answer:
25, 30, 35, 40, 45, 50, 55, 60

Question 3.
Count by tens.
33, 43, 53, __, __, __, __, __
Answer:
33, 43, 53, 63, 73, 83, 93, 103

8.2 Count to 1,000 in Different Ways

Question 4.
Count by fives.
210, 215, 220, ___, __, __, __, ___
Answer:
210, 215, 220, 225, 230, 235, 240, 245

Question 5.
Count by tens.
740, 750, 760, __, __, __, __, __, ___
Answer:
740, 750, 760, 770, 780, 790, 800, 810

Question 6.
Count by hundreds.
300, 400, 500, __, __, __, __, __
Answer:
300 , 400, 500, 600, 700, 800, 900, 1000

8.3 Place Value Patterns

Use place value to find the missing numbers.

Question 7.
854, 855, 856, __, __, __, __
Answer:
854, 855, 856, 857, 858, 859, 860

Question 8.
940, 950, 960, __, __, __, __
Answer:
940, 950, 960, 970, 980, 990, 1000

Question 9.
275, 375, 475, ___, __, __, __
Answer:
275, 375, 475, 575, 675, 775, 875

Question 10.
Repeated Reasoning
Use place value to describe each pattern.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 122

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-8.3-Place-Value-Patterns-Question-10

8.4 Find More or Less

Question 11.
10 more than 813 is ___
Answer:
10 more than 813 is 823.

Question 12.
10 less than 976 is __
Answer:
10 less than 976 is 966.

Question 13.
100 more than 254 is __.
Answer:
100 more than 254 is 354.

Question 14.
100 less than 531 is __.
Answer:
100 less than 531 is 431.

Question 15.
1 more than 444 is ___
Answer:
1 more than 444 is 445.

Question 16.
1 less than 622 is __.
Answer:
1 less than 622 is 621

Question 17.
Modeling Real Life
Your craft book has 110 ideas. Your friend’s craft book has 10 fewer ideas than yours. How many ideas does your friend’s craft book have?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 123
Answer:
Number of Ideas in my craft book = 110 .
Number of ideas in my friends craft book =110 – 10 =100 .

Question 18.
Modeling Real Life
You have 324 beads. Newton has 100 more than you. Descartes has10 fewer than Newton. How many beads does Descartes have?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 124
Answer:
Number of beads = 324.
Number of beads newton have = 324 + 100 = 424 .
Number of beads Descartes have = 424 – 10 = 414 .

8.5 Compare Numbers Using Symbols

Compare

Question 19.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 125
Answer:
583 = 583

Question 20.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 126
Answer:
626 < 725

Question 21.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 127
Answer:
932 > 910

Question 22.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 128
Answer:
49 < 411

Question 23.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 129
Answer:
300 + 40 + 6 = 346
328 <346

Question 24.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 130
Answer:
200 + 10 + 8 = 218
280 > 218

Question 25.
There are 318 kids in a gymnastics club. There are 219 kids in a swim club. Which club has fewer kids?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 131
Answer:
Number of kids in Gymnastics club = 318.
Number of kids in Swim club =219.
Swim club has 99 fewer kids than Gymnastics club .

8.6 Compare Numbers Using a Number Line

Compare
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 132

Question 26.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 133
Answer:
683 < 687

Question 27.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 134
Answer:
689 > 688

Question 28.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 135
Answer:
681 = 681

Question 29.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 136
Answer:
690 > 680

Write a number that makes the statement true.

Question 30.
324 < __
Answer:
324 < 325

Question 31.
136 > __
Answer:
136 > 133

Question 32.
__ = 750
Answer:
750 = 750

Question 33.
__ < 871
Answer:
771 < 871

Question 34.
Number Sense
What number might Descartes be thinking?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 137
Answer:
238<___>325.
238<315>325

Count and Compare Numbers to 1,000 Cumulative Practice 1 – 8

Question 1.
Which equation can you use to check your answer to 32 − 18?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 138
Answer:
32 – 18 =14.
Equation
18 + 14 = 32

Question 2.
Which number does not belong?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 139

Answer:
324, 334, 344, 354, 364, 374
345 does not belong

Question 3.
Find the missing digits.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 140

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-3

Question 4.
Use the number cards to decompose to subtract.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 141
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-4

Question 5.
Which choice does not show 124?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 142

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-5

Question 6.
Which quick sketch shows 43 − 25?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 143
Answer:
43 – 25 = 18
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-6

Question 7.
You have 4 fewer gel pens than your friend. You have 6 gel pens. Which picture shows how many gel pens your friend has?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 144

Answer:
Number of gel pens with me = 6.
Number of gel pens with my friend = 6 + 4 = 10.Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-7

Question 8.
Which number does not belong?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 145
Answer:
563<_____<567 . It can be 564, 565, 566
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-8

Question 9.
Your friend uses compensation to add. Complete the equation to show what numbers he added after using compensation.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 146

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-9

Question 10.
Which choices show 238?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 147
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-10

Question 11.
Which picture shows 2 groups of 3?
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 148
Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-11

Question 12.
Descartes wants to use addition to subtract 51 − 25. Help him complete the number line and equations.
Big Ideas Math Answer Key Grade 2 Chapter 8 Count and Compare Numbers to 1,000 149

Answer:
Big-Ideas-Math-Book-2nd-Grade-Answer-Key-Chapter-8-Count-Compare-Numbers-to-1,000-Count-Compare-Numbers-1,000-Cumulative-Practice-1 - 8-Question-12

Conclusion:
I wish the above mentioned details are helpful for you. Make use of the given links and kickstart your preparation. This Big Ideas Math Grade 2 Chapter 8 will help you to score highest marks in the exams. All the Best!!!

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

Big Ideas Math Book 3rd Grade Answer Key Chapter 15 Find Perimeter and Area answer key are attainable in this chapter. This answer key is useful for students who are preparing for their examinations and can download this pdf for free of cost. Here, each and every question was explained in detail which helps students to understand easily. Big Ideas Math Answers Grade 3 Chapter 15 explains different types of questions on perimeter and area.

Big Ideas Math Book 3rd Grade Answer Key Chapter 15 Find Perimeter and Area

This chapter contains different topics like finding the perimeter of the polygons, finding unknown side lengths and the same perimeter with different areas, etc. Those topics were being set up by the numerical specialists as indicated by the most recent release. Look down this page to get the answers for all the inquiries. Tap the connection to look at the subjects shrouded in this chapter Find Perimeter and Area.

Lesson 1 Understand Perimeter

Lesson 2 Find Perimeters of Polygons

Lesson 3 Find Unknown Side Lengths

Lesson 4 Same Perimeter, Different Areas

Lesson 4 Same Perimeter, Different Areas

Lesson 5 Same Area, Different Perimeters

Performance Task

Lesson 15.1 Understand Perimeter

Explore and Grow

Question 1.
Model a rectangle on your geoboard. Draw the rectangle and label its side lengths. What is the distance around the rectangle?
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 1
Answer:
The units around the rectangle are 15 units.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
In the above figure, the length of the rectangle is 4 units, and
the breadth of the rectangle is 3 units.
The units around the rectangle are 15 units.

Structure
Change the side lengths of the rectangle on your geoboard. What do you notice about the distance around your rectangle compared to the distance around the rectangle above? Explain

Answer:
The distance around the rectangle is 15 units

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
In the above figure, we can see the length of the rectangle is 3 units, and
the breadth of the rectangle is 4 units.
There is no change in the distance around the rectangle which is 15 units.

Think and Grow: Understand Perimeter
Perimeter is the distance around a figure. You can measure perimeter using standard units, such as inches, feet, centimeters, and meters.
Example
Find the perimeter of the rectangle.
Choose a unit to begin counting. Count each unit around the rectangle.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 2
Answer:
The perimeter of the rectangle is 20 in.

Explanation:
To find the perimeter of the triangle, we need to know the length and the breadth of the rectangle.
Here, the length of the rectangle is 7 in,
and the breadth is 3 in,
So the perimeter of the rectangle is 2(Length + Breadth)
= 2(7+3)
= 2(10)
= 20 in.

Show and Grow

Question 1.
Find the perimeter of the figure.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 4
There are ___ units around the figure.
Answer:
There are 22 units around the figure.

Explanation:
To find the perimeter of the rectangle, we need to know the length and the breadth of the rectangle.
Here, the length of the rectangle is 6 m,
and the breadth is 5 m,
So the perimeter of the rectangle is 2(Length + Breadth)
= 2(6+5)
= 2(11)
= 22 m.

Question 2.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 5
There are ___ units around the figure.
So, the perimeter is ____ feet.
Answer:
The perimeter of the figure is 24 ft.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure
So the sides of the figure are 5,3,2,4,3,7.
and the perimeter of the figure is 5+3+2+4+3+7
= 24 ft.

Question 3.
Draw the figure that has a perimeter of 16 centimeters.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 6
Answer:
The sides of the figure are 4 cm.

Explanation:
As the perimeter of the figure is 16 cm,
So let the sides of the figure be 4 cm,
by that, we can get the perimeter as 16 cm, i.e
4+4+4+4= 16 cm.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

Apply and Grow: Practice

Question 4.
Find the perimeter of the figure.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 7
There are ___ units around the figure.
So, the perimeter is ___
Answer:
There are 20 units around the figure.
So, the perimeter is 20 cm.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure
So the sides of the figure are 3,3,2,2,5,5.
and the perimeter of the figure is 3+3+2+2+5+5
= 20 units,
So the perimeter is 20 cm.

Question 5.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 8
There are ___ units around the figure.
So, the perimeter is ___
Answer:
There are 26 units around the figure.
So, the perimeter is 26 ft.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure
So the sides of the figure is 5,5,2,3,1,3,2,5
and the perimeter of the figure is 5+5+2+3+1+3+2+5
= 26 units,
So the perimeter is 26 ft.

Question 6.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 9
Perimeter = ___
Answer:
The perimeter of the figure is 22 in.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure
So the sides of the figure is 4,3,2,3,3,3,1,3
and the perimeter of the figure is 4+3+2+3+3+3+1+3
= 22 units,
So the perimeter is 22 in.

Question 7.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 10
Perimeter = ___
Answer:
The perimeter is 24 m.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure
So the sides of the figure is 5,7,2,2,1,2,1,1,1,2
and the perimeter of the figure is 5+7+2+2+1+2+1+1+1+2
= 24 units,
So the perimeter is 24 m.

Question 8.
Draw a figure that has a perimeter likely measurement for the of 14 centimeters.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 11
Answer:
The length of the rectangle is 2 cm, and
the breadth is 5 cm.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
In the above figure, we can see the length of the rectangle is 2 cm
and the breadth of the rectangle is 5 cm
perimeter = 2(length + breadth)
= 2(5+2)
= 2(7)
= 14 cm.
so the perimeter of the rectangle is 14 cm.

Question 9.
Precision Which is the most likely measurement for the perimeter of a photo?
20 inches
100 meters
5 centimeters
2 inches
Answer:
2 inches.

Explanation:
The most likely measurement for the perimeter of a photo is 2 inches.

Question 10.
You be the teacher Your friend counts the units around the figure and says the perimeter is 12 units. Is your friend correct? Explain.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 12
Answer:
No, he is not correct.

Explanation:
No, he is not correct. As there are 2+2+1+1+4+1+1+2= 14 units, but not 12 units. So he is not correct.

Think and Grow: Modeling Real Life
Use a centimeter ruler to find the perimeter of the bookmark.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 13
The perimeter is ___
Answer:
The perimeter of the bookmark is 26 cm.

Explanation:
On measuring, the length of the sides of the bookmark are 4 cm, 9 cm, 2 cm, 2 cm, 9 cm
to find the perimeter of the bookmark, we will add all the length of the sides
so the perimeter of the bookmark is
p = 4 cm+ 9 cm+ 2 cm+ 2 cm+ 9 cm
= 26 cm.
The perimeter of the bookmark is 26 cm.

Show and Grow

Question 11.
Use an inch ruler to find the perimeter of the decal.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 14
Answer:
The perimeter of the decal is 17 in.

Explanation:
On measuring, the length of the sides of the decal is 5in, 2in, 5in, 5in
to find the perimeter of the decal, we will add all the length of the sides
so the perimeter of the decal is
p= 5in+2in+5in+5in
= 17 in
The perimeter of the decal is 17 in.

Question 12.
How much greater is the perimeter of your friend’s desk than the perimeter of your desk?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 15
Answer:
Friend’s perimeter is 22-16= 6 times greater.

Explanation:
As we can see figure 1 is a square and the sides of the square are 4 ft.
So the perimeter of the square is a+a+a+a,
= 4+4+4+4
= 16 ft.
And now let’s find the perimeter of the friend’s figure,
So the sides of the figure is 2,6,5,2,3,4
and the perimeter is 2+6+5+2+3+4= 22 ft.
By this, we can see that the friend’s figure has a greater perimeter,
and friend’s perimeter is 22-16= 6 times greater.

Question 13.
DIG DEEPER!
Explain how you might use a centimeter ruler and string to estimate the perimeter of the photo of the window.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 16
Answer:
Here, we will use the ruler to find the length of the bottom part of the window and the sides which are straight we can find the length using the ruler. And the curve sides we will measure using the string.

Understand Perimeter Homework & Practice 15.1

Question 1.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 17
There are ___ units around the figure.
So, the perimeter is ___ inches.
Answer:
There are 20 units around the figure,
So the perimeter is 20 in.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure,
As we can see the above image is a square,
and the perimeter of the square is s+s+s+s
= 5+5+5+5
= 20 in.
As there are 20 units around the figure,
So the perimeter is 20 in.

Question 2.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 18
There are ___ units around the figure.
So, the perimeter is ___ feet.

Answer:
There are 32 units around the figure,
So the perimeter is 32 ft.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure,
The sides of the above figure is 2,3,4,3,2,5,8,5
and the perimeter of the figure is 2+3+4+3+2+5+8+5
= 32 units.
As there are 32 units around the figure,
So the perimeter is 32 ft.

Question 3.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 19
Perimeter = ___
Answer:
There are 26 units around the figure,
So the perimeter is 26 cm.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure,
The sides of the above figure is 2,2,2,3,1,3,5,8
and the perimeter of the figure is 2+2+2+3+1+3+5+8
= 26 units.
As there are 26 units around the figure,
So the perimeter is 26 cm.

Question 4.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 20
Perimeter = ___
Answer:
There are 38 units around the figure,
So the perimeter is 38 m.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure,
The sides of the above figure is 2,8,2,3,1,3,2,8,2,3,1,3
and the perimeter of the figure is 2+8+2+3+1+3+2+8+2+3+1+3
= 38 units.
As there are 38 units around the figure,
So the perimeter is 38 m.

Question 5.
Draw a figure that has a perimeter of 18 inches.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 21
Answer:
The length of the rectangle is 5 in
and the breadth of the rectangle is 4 in.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
Let the length of the rectangle be 5 in
and the breadth of the rectangle be 4 in
so the perimeter of the rectangle is
p = 2(length+breadth)
= 2(5+4)
= 2(9)
= 18 in.

Question 6.
Reasoning
Which color represents the perimeter of the rectangle? What does the other color represent?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 22
Answer:
Blue color represents the perimeter of the rectangle and
the other color yellow represents the area of the figure.

Explanation:
In the above figure, the blue color represents the perimeter of the rectangle.
Because the perimeter represents the distance around the edge of the shape.
And the other color yellow represents the area of the figure,
as area represents the amount of space inside a shape.

Question 7.
Modeling Real Life
Use a centimeter ruler tofind the perimeter of the library card.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 24
Answer:
The perimeter of the library card is 24 cm.

Explanation:
On measuring, the length of the sides of the library card is 5cm, 7cm, 5cm, 7cm
to find the perimeter of the library card, we will add all the length of the sides
so the perimeter of the library card is
p= 5cm+7cm+5cm+7cm
= 24 cm
The perimeter of the library card is 24 cm.

Question 8.
Modeling Real Life
How much greater is the perimeter of your piece of fabric than the perimeter of your friend’ spiece of fabric?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 25
Answer:
My fabric is 4 inches greater than my friend’s fabric.

Explanation:
To find the perimeter of the figure 1, we will add all the sides of the figure,
The sides of the above figure is 2,1,1,2,2,2,8,2,2,2,1,1
and the perimeter of the figure is 2+1+1+2+2+2+8+2+2+2+1+1
= 26 in.
So the perimeter of the figure is 26 in.
And now let’s find the perimeter of the friend’s figure,
So the sides of the figure is 1,2,2,4,1,5,4,3
and the perimeter is 1+2+2+4+1+5+4+3
= 22 in.
By this, we can see that my fabric has the highest perimeter than the friend’s fabric
which is 26-22= 4 in greater.

Review & Refresh

Write two equivalent fractions for the whole number.

Question 9.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 26
Answer:
1= 4/4 = 6/6

Explanation:
Here, the equivalent fraction for the whole number means if the numerator was divided by the denominator without any reminder then the fraction is equivalent to a whole number. So 1= 4/4 = 6/6.

Question 10.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 27
Answer:
4= 4/1 = 8/2.

Explanation:
Here, the equivalent fraction for the whole number means if the numerator was divided by the denominator without any reminder then the fraction is equivalent to a whole number. So 4= 4/1 = 8/2.

Question 11.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 28
Answer:
6= 24/4 = 36/6.

Explanation:
Here, the equivalent fraction for the whole number means if the numerator was divided by the denominator without any reminder then the fraction is equivalent to a whole number. So 6= 24/4 = 36/6.

Find Perimeters of Polygons 15.2

Explore and Grow

Model a rectangle on your geoboard. Draw the rectangle and label its side lengths. Then find the perimeter in more than one way.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 29

Answer:
The perimeter of the rectangle is 14 units.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
In  the above figure, we can see the length of the rectangle is 4 units
and the breadth of the rectangle is 3 units,
so the perimeter of the rectangle is
p =2(length + breadth)
= 2(4+3)
= 2(7)
= 14 units.
The perimeter of the rectangle is 14 units.
Critique the Reasoning of Others
Compare your methods of finding the perimeter to your partner’s methods. Explain how they are alike or different.
Answer:
There are two methods to find the perimeter explained below.

Explanation:
There are two ways to find the perimeter.
The first method is
Perimeter = 2(length + breadth)
here, we will add length and breadth, and then we will multiply the result by 2.
and the second method is
Perimeter = a+b+c+d
here, we will add all the sides of the figure.

Think and Grow: Find Perimeter

Example
Find the perimeter of the trapezoid.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 30
You can find the perimeter of a figure by adding all of the side lengths.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 31
Write an equation. The letter P represents the unknown perimeter. Add the side lengths.
So, the perimeter is ___.
Answer:
So, the perimeter is 36 in.

Explanation:
To find the perimeter of the trapezoid, we will add all the sides of the trapezoid,
so the sides of the trapezoid is 6 in,12 in,8 in,10 in
The perimeter is 6+12+8+10
= 36 in.

Example
Find the perimeter of the rectangle
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 33
Because a rectangle has two pairs of equal sides, you can also use multiplication to solve.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 34
One Way:
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 35
Another Way:
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 36
So, the perimeter is ___.

Answer:
Perimeter = 7+9+7+9
= 32 cm.
Perimeter= 2×9 + 2× 7
= 32 cm.
So, the perimeter is 32 cm.

Explanation:
To find the perimeter of a rectangle, we have two ways,
One way is to add all the sides of the rectangle, which is
7+9+7+9= 32 cm.
And the other way is, as the two sides of the rectangle are equal, we wil use formula
Perimeter = 2( Length + Breadth)
= 2× Length + 2 × Breadth
= 2×9 + 2× 7
= 18+ 14
= 32 cm.

Show and Grow

Find the perimeter of the polygon.
Answer:

Explanation:
To find the perimeter of the polygon, we will add the length of the all sides.

Question 1.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 37
The perimeter is ___.
Answer:
The perimeter is 12 m.

Explanation:
To find the perimeter of the polygon, we will add the length of all sides of the polygon.
So the length of the sides is 5 m, 3 m, 3 m, 2 m
The perimeter is 5+3+3+2
= 12 m.

Question 2.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 38
The perimeter is ___.

Answer:
The perimeter is 24 ft.

Explanation:
As we can see in the above figure which has all sides are equal,
so the perimeter of the square is 4s
= 4×6
= 24 ft.

Apply and Grow: Practice

Find the perimeter of the polygon.

Question 3.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 39
Perimeter = ___
Answer:
The perimeter of the polygon is 28 m.

Explanation:
To find the perimeter of the polygon, we will add the length of the all sides of the polygon.
So the length of the sides is 4 m, 9 m, 10 m, 5 m
The perimeter is 4+9+10+5
= 28 m.

Question 4.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 40
Perimeter = ___
Answer:
The perimeter of the figure is 40 in.

Explanation:
To find the perimeter of the figure, we will add the length of all sides of the figure.
So the length of the sides is 12 in, 4 in, 8 in, 7 in,9 in.
The perimeter is 12+4+8+7+9
= 40 in.

Question 5.
Rectangle
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 41
Perimeter = ___
Answer:
The perimeter of the rectangle is 36 cm.

Explanation:
To find the perimeter of the rectangle, we need to know the length and the breadth of the rectangle.
Here, the length of the rectangle is 9 cm,
and the breadth is 10 cm,
So the perimeter of the rectangle is 2(Length + Breadth)
= 2(10+9)
= 2(19)
= 38 cm.

Question 6.
Rhombus
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 42
Perimeter = ___
Answer:
The perimeter of the Rhombus is 4 in.

Explanation:
As all sides of the Rhombus are equal, so the formula of the Rhombus is 4a
and the side of the Rhombus is 1 in,
so the perimeter is 4a
= 4×1
= 4 in.

Question 7.
Parallelogram
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 43
Perimeter = ___
Answer:
The perimeter of the parallelogram is 22 cm.

Explanation:
As the opposite sides of the parallelogram are equal,
so the perimeter of the parallelogram is 2(a+b)
the length of the parallelogram is 3 cm,
and the breadth of the parallelogram is 8 cm
So the perimeter of the parallelogram is
= 2(3+8)
= 2(11)
= 22 cm.

Question 8.
Square
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 44
Perimeter = ___
Answer:
The perimeter of the square is 16 ft.

Explanation:
As we can see in the above figure which has all sides are equal,
so the perimeter of the square is 4s
= 4×4
= 16 ft.

Question 9.
You build a pentagon out of wire for a social studies project. Each side is 8 centimeters long. What is the perimeter of the pentagon?
Answer:
The perimeter of the pentagon is 40 cm.

Explanation:
The length of the pentagon is 8 cm,
so the perimeter of the pentagon is 5a,
which is 5×8
= 40 cm

Question 10.
Number Sense
The top length of the trapezoid is 4 feet. The bottom length is double the top. The left and right lengths are each 2 feet less than the bottom. Label the side lengths and find the perimeter of the trapezoid.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 45
Answer:
The sides of the trapezoid are 4ft, 6ft, 8ft, 6ft, and the perimeter is 24 ft.

Explanation:
As the top length of the trapezoid is 4 feet and the bottom length is double the top,
which is 4×2= 8 feet. And the left and right lengths are each 2 feet less than the bottom,
which means 8 – 2 = 6 ft each.

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

So to find the perimeter of the trapezoid is we will add the length of all sides.
The perimeter of the trapezoid is 4+6+8+6= 24 ft.

Question 11.
Writing
Explain how finding the perimeter of a rectangle is different from finding its area.
Answer:
Perimeter= 2(length + breadth)
Area = length × breadth.

Explanation:
To find the perimeter of the rectangle,
we will add the length and breadth and will multiply the result with 2
Perimeter= 2(length + breadth)
and to find the area of the rectangle,
we will multiply the length and breadth of the rectangle.
Area = length × breadth.

Question 12.
Dig Deeper!
A rectangle has a perimeter of 12 feet. What could its side lengths be ?
Answer:
The length of the rectangle is 4 feet
and the breadth of the rectangle is 2 feet

Explanation:
Given the perimeter is 12 feet,
so the let the length be 4 feet
and the breadth be 2 feet
Let’s check on the length and breadth is correct are not
perimeter = 2( length + breadth)
= 2( 4+2)
= 2(6)
= 12 feet.

Think and Grow: Modeling Real Life

The rectangular sign is 34 feet longer than it is wide. What is the perimeter of the sign?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 46
Understand the problem:
Make a plan:
Solve:
The perimeter is ___.
Answer:
The perimeter of the rectangular sign is 124 ft.

Explanation:
Given the rectangular sign is 34 feet longer than it’s wide
and the wide is 14 ft,
so the length is 34ft + 14ft= 48 ft.
the perimeter of the rectangular sign is
P= 2(48ft + 14ft)
= 2(62ft)
= 124 ft.
The perimeter of the rectangular sign is 124 ft.

Show and Grow

Question 13.
A city has a rectangular sidewalk in a park. The sidewalk is 4 feet wide and is 96 feet longer than it is wide. What is the perimeter of the sidewalk?
Answer:
The perimeter of the sidewalk is 208 feet.

Explanation:
As given the rectangular sidewalk’s wide is 4 feet and the length is 96 feet longer than it’s wide,
which means 96+4= 100 feet is the length of the rectangular sidewalk,
so the perimeter of the rectangular sidewalk is 2( length + breadth)
= 2( 4+100)
= 2(104)
= 208 feet.

Question 14.
A team jogs around a rectangular field three times. The field is 80 yards long and 60 yards wide. How many yards does the team jog?
Answer:
The number of yards does the team jog is 3×280= 840 yards.

Explanation:
The length of the rectangular field is 80 yards,
The breadth of the rectangular field is 60 yards,
So, the perimeter of the rectangular field is 2(length + breadth)
= 2(80+60)
= 2(140)
= 280 yards.
As the team jogs around a rectangular field three times,
so the number of yards does the team jog is 3×280= 840 yards.

Question 15.
Each side of the tiles is 8 centimeters long. What is the sum of the perimeters?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 47
You put the tiles together as shown. Is the perimeter of this new shape the same as the sum of the perimeters above? Explain.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 48
Answer:
The sum of the perimeters is 96 cm.
Yes, there will be a change in the perimeter of the new figure. The perimeter is 80 cm.

Explanation:
In the above figure, we can see a hexagon that has six sides.
So the formula for the perimeter of a hexagon is 6a,
the perimeter of the tiles is 6×8
= 48 cm.
So the sum of the tiles 48+48= 96 cm.
Yes, there will be a change in the perimeter of the new figure. As there are ten sides in the new figure, so the perimeter of the new figure is 10×8= 80 cm.

Find Perimeters of Polygons Homework & Practice 15.2

Find the perimeter of the polygon

Question 1.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 49
Perimeter = ___
Answer:
The perimeter of the polygon is 29 in.

Explanation:
The perimeter of the polygon is the sum of the length of its sides,
So the sides of the polygon are 9 in, 4 in, 6 in, 10 in,
and the perimeter of the polygon is 9+4+6+10= 29 in.

Question 2.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 50
Perimeter = ___
Answer:
The perimeter of the figure is 38 cm.

Explanation:
The perimeter of the figure is the sum of the length of its sides,
So the sides of the figure are 6 cm, 5 cm, 7 cm, 8 cm, 7 cm, 5 cm,
and the perimeter of the figure is 6+5+7+8+7+5= 38 cm.

Question 3.
Square
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 51
Perimeter = ___
Answer:
The perimeter of the square is 8 ft.

Explanation:
The length of the square is 2 ft,
and the perimeter of the square is 4a
= 4×2
= 8 ft.
so the perimeter of the square is 8 ft.

Question 4.
Parallelogram
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 52
Perimeter = ___
Answer:
The perimeter of the parallelogram is 8m.

Explanation:
The length of the parallelogram is 1 m,
and the breadth of the parallelogram is 3 m,
so the perimeter of the parallelogram is 2(length + breadth)
= 2(1+3)
= 2(4)
= 8 m.

Question 5.
Rhombus
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 53
Perimeter = ___
Answer:
The perimeter of the rhombus is 40 ft.

Explanation:
The length of the side of the rhombus is 10 ft,
and the perimeter of the rhombus is 4a
= 4×10
= 40 ft.

Question 6.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 54
Perimeter = ___
Answer:
The perimeter of the rectangle is 22 in.

Explanation:
To find the perimeter of the rectangle, we need to know the length and the breadth of the rectangle.
Here, the length of the rectangle is 7 in,
and the breadth is 4 in,
So the perimeter of the rectangle is 2(Length + Breadth)
= 2(7+4)
= 2(11)
= 22 in.

Question 7.
Each side of a triangle is 5 centimeters long. What is the perimeter of the triangle?
Answer:
The perimeter of the triangle is 15 cm.

Explanation:
Given the length of the side of the triangle is 5 cm,
and the perimeter of the triangle is 3a
= 3×5
= 15 cm.

Question 8.
You Be The Teacher
Descartes says that a square will always have a greater perimeter than a triangle because it has more sides. Is he correct? Explain.
Answer:
Yes, Descartes is correct.

Explanation:
Yes, Descartes is correct. As the square has four sides and the perimeter of the square is 4a.
Whereas the triangle has 3 sides and the perimeter of the triangle is 3a.
So the square will always have a greater perimeter than a triangle.

Question 9.
Structure
Draw a pentagon and label its sides so that it has the same perimeter as the rectangle.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 55
Answer:
The length of the side of the pentagon is 4m.

Explanation:
Given the length of the rectangle is 7 m,
and the breadth of the rectangle is 3 m,
So the perimeter of the rectangle is 2( length + breadth)
= 2(7+3)
= 2(10)
= 20 m.
Here we have the perimeter of the pentagon which is 20 m,
so we should find the sides of the pentagon,
As we know the perimeter of the pentagon is 5a
5a= 20
a= 20/5
= 4 m.
So the length of the side of the pentagon is 4m.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

Question 10.
Modeling Real Life
An Olympic swimming pool is 82 feet longer than it is wide. What is the perimeter of the swimming pool?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 150
Answer:
The perimeter of the swimming pool is 492 ft.

Explanation:
Given the Olympic swimming pool is 82 feet longer than it’s wide
and the wide is 82 ft,
so the length of the swimming pool is 82+82= 164 ft
the perimeter of the swimming pool is
p= 2(length+breadth)
= 2(164+82)
= 2(246)
= 492 ft.
The perimeter of the swimming pool is 492 ft.

Question 11.
Modeling Real Life
You put painter’s tape around two rectangular windows. The windows are each 52 inches long and 28 inches wide. How much painter’s tape do you need?
Answer:
The painter’s tape 160 inches.

Explanation:
Given the length of the window is 52 inches
and the width of the window is 28 inches
so the perimeter of the window is
p= 2(length + breadth)
= 2(52+28)
= 2(80)
= 160 inches.
So the painter’s tape 160 inches.

Review & Refresh

Question 12.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 56
Answer:
737.

Explanation:
On adding 590+147 we will get 737.

Question 13.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 57
Answer:
894.

Explanation:
On adding 636+258 we will get 894

Question 14.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 58
Answer:
805.

Explanation:
On adding 476+329 we will get 805

Lesson 15.3 Find Unknown Side Lengths

Explore and Grow

You have a map with the three side lengths shown. The perimeter of the map is 20 feet. Describe how you can find the fourth side length of your map without measuring.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 59

Answer:
The fourth side of the map is 4ft.

Explanation:
We can find the value of the fourth side in two methods
First method:
Given the perimeter of the map is 20 feet,
and the sides of the map is 6 ft, 4 ft, 6ft, X ft.
As we know the perimeter of the rectangle is
6+4+6+X= 20 feet
16+X= 20
X= 20- 16
= 4 ft.
Second method:
As we know that the opposite sides of the rectangle are equal, as we know that the length of the side is 4 ft so the other side will also be 4 ft.

Repeated Reasoning
How is finding the unknown side length of a square different from finding the unknown side length of a rectangle?
Answer:
Refer below for a detailed explanation.

Explanation:
To find the unknown side length of the square
if we know the perimeter of the square then
the perimeter of the square is
p= 4a
we will substitute the value of p, on solving we will get the length of the square.
and to find the unknown side length of the rectangle,
we need to know the area or perimeter of the rectangle
and the other side of the rectangle.
so the formula of the perimeter of the rectangle is
p = 2(length + breadth)
we will substitute the perimeter value and the other side value
then we can find the length of the rectangle.

Think and Grow: Find Unknown Side Lengths
Example
The perimeter of the trapezoid is 26 feet. Find the unknown side length.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 60
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 61
Write an equation for the perimeter.
Add the known side lengths.
What number plus 16 equals 26?
The unknown side length is ___.
Answer:
K= 10,
The number 16+10 equals 26.
The unknown side length is 10.

Explanation:
Given the perimeter of the trapezoid is 26 ft,
So the perimeter of the trapezoid is
K+5+6+5= 26
K+16= 26
K= 10.
The number 16+10 equals 26.
The unknown side length is 10.

Example
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 62
The perimeter of the square is 32 centimeters. Find the length of each side of the square.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 63
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 64
Write an equation for the perimeter 4 times what number equals 32?
So, the length of each side is ___.
Answer:
n= 8.
The length of each side is 8 cm.

Explanation:
The perimeter of the square is 32 cm
So to find the sides of the square
4a= 32
a= 32/4
= 8 cm.
So, the length of each side is 8 cm.

Show and Grow

Find the unknown side length.

Question 1.
Perimeter = 34 inches
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 65
y = ___
Answer:
y = 13 in.

Explanation:
Given the perimeter is 34 inches,
and the sides of the figure are 10 in, 7 in, 4 in, y in.
so the perimeter of the figure is
34 in = 10+7+4+y
34 = 21+ y
y = 34 – 21
y = 13.

Question 2.
Perimeter = 20 meters
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 66
j = ___
Answer:
The length of the sides of the square is 5 m.

Explanation:
As we can see the above figure is a square and the perimeter of the square 20 meters,
so the sides of the square are
perimeter = 4a
20 = 4 j
j= 5 m.

Apply and Grow: Practice

Find the unknown side length.

Question 3.
Perimeter = 19 feet
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 67
y = ___
Answer:
The perimeter of the figure is 8 ft.

Explanation:
The perimeter of the figure is 19 feet,
and the length of the sides of the figure is 8 ft, 3 ft, y ft.
so perimeter = 8 ft + 3 ft + y ft
19= 11 ft + y ft
y= 19 ft – 11 ft
= 8 ft.

Question 4.
Perimeter = 26 centimeters
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 68
d = ___
Answer:
d= 4 cm.

Explanation:
The perimeter of the figure is 26 cm,
and the length of the sides of the figure is 10 cm, 5 cm, 7 cm, d cm.
so the perimeter of the figure is
p = 10+5+7+d
26 = 22 + d
d= 26-22
= 4

Question 5.
Perimeter = 30 feet
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 69
k = ___
Answer:
k = 11 ft.

Explanation:
Given the perimeter of the figure is 30 feet,
and the length of the sides is 5ft, 12 ft, 2 ft, k ft
So the perimeter of the figure is
p = 5 + 12 + 2 + k
30 ft = 19 ft + k
k = 11 ft.

Question 6.
Perimeter = 32 inches
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 70
k = ___
Answer:
k= 4 in.

Explanation:
Given the perimeter of the figure is 32 inches,
and the lengths of all sides is 10 in, 4 in, 5 in, 4 in, 5 in, k in.
So the perimeter of the figure is
p= 10+4+5+4+5+k
32 in =  28 in + k
k= 4 in.

Question 7.
Perimeter = 8 meters
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 71
y = ___
Answer:
y = 2 m.

Explanation:
Given the perimeter of the rhombus is 8 feet,
and the length of the side is y m,
So the perimeter of the rhombus is
p = 4a
8 m = 4×y
y = 2 m.

Question 8.
Perimeter = 48 inches
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 72
d = ___
Answer:
d = 8 in.

Explanation:
Given the perimeter of the Hexagon is 48 inches,
and the length of the sides is d in
So the perimeter of the hexagon is
p = 6 a
48 in = 6 × d in
d= 8 in.

Question 9.
Number Sense
A rectangle has a perimeter of 30 centimeters. The left side is 7 centimeters long. What is the length of the top side?
Answer:
The length of the top side is 8 cm.

Explanation:
Given the perimeter of the rectangle is 30 cm,
and the length of the left side of the rectangle is 7 cm,
So let the length of the top side be X,
Perimeter of the rectangle is
P = 2 (Length + breadth)
30 = 2 ( 7 cm + X cm)
30 / 2 = 7 cm + X cm
15 = 7 cm + X cm
X = 15 cm – 7 cm
X = 8 cm.
so, the length of the top side is 8 cm.

Question 10.
Writing
A triangle has three equal sides and a perimeter of 21 meters. Explain how to use division to find the side lengths.
Answer:
The length of the side is 7 m.

Explanation:
Given the perimeter of the triangle is 21 m,
and we need to find the side of the lengths,
so the perimeter of the triangle is
p = 3a
21 m = 3×a
a = 21/3
= 7 m
So the length of the side is 7 m.

Question 11.
DIG DEEPER!
Newton draws and labels the square and rectangle below. The perimeter of the combined shape is 36 feet. Find the unknown side length.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 73
Answer:
The unknown side of the length is 14 ft.

Explanation:
As the perimeter of the combined shape is 36 feet,
and the length of the side of the rectangle is 4 ft, and the other side be X ft
and the perimeter of the rectangle is 36 ft,
so perimeter = 2 (length + breadth)
36 ft  = 2( 4 ft + X ft)
36/2 = 4 ft + X ft
18 = 4 ft + X ft
X= 14 ft.
The unknown side of the length is 14 ft.

Think and Grow: Modeling Real Life

The perimeter of the rectangular vegetable garden is 30 meters. What are the lengths of the other three sides?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 74
Understand the problem:
Make a plan:
Solve:
The lengths of the other three sides are ___, ___, and ___.
Answer:
The lengths of other three sides is 6 m, 9 m, 9 m.

Explanation:
The perimeter of the rectangular vegetable garden is 30 m
as it is in a rectangular shape, so the opposite sides are equal,
and the length of the side of the rectangular vegetable garden is 6m,
let the other side be X m
so the perimeter is
p = 2( length + breadth)
30 m = 2( 6 m+ X m)
30/2 = 6 + X
15 = 6 + X
X= 15 – 6
= 9 m.
So the lengths of other three sides is 6 m, 9 m, 9 m.

Show and Grow

Question 12.
The perimeter of the rectangular zoo enclosure is 34 meters. What are the lengths of the other three sides?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 75
Answer:
The lengths of the other three sides are 12 m, 11 m, 11 m.

Explanation:
The perimeter of the rectangular zoo is 34 m
as it is in rectangular shape, so the opposite sides are equal,
and the length of the side of the rectangular zoo is 12 m,
let the other side be X m
so the perimeter is
p = 2( length + breadth)
34 m = 2( 12 m+ X m)
34/2 = 12 + X
17 = 6 + X
X= 17 – 6
= 11 m.
So the lengths of the other three sides is 12 m, 11 m, 11 m.

Question 13.
The floor of an apartment is made of two rectangles. The Perimeter is 154 feet. What are the lengths of the other three sides?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 76
Answer:
The other length of the side of the small rectangle is 7 ft.
The other length of the side of the big rectangle is 30 ft.

Explanation:
Given the perimeter of the apartment is 154 feet,
first, we will take the big rectangle,
as the opposite sides of the rectangle are equal and the length of the big rectangle is 30 ft
so the other length is also 30 ft.
as the perimeter of the small rectangle is 38 ft
and the length of the one side of the rectangle is 12 ft
so the other length of the small rectangle is
p = 2(length+breadth)
38 = 2(12 + breadth)
38/2 = 12+ breadth
19= 12 + breadth
breadth= 19 – 12
= 7 ft.
The other length of the side is 7 ft.

Question 14.
DIG DEEPER!
You want to make a flower bed in the shape of a pentagon. Two sides of the flower bed are each 7 inches long, and two sides are each 16 inches long. The perimeter is 57 inches. Sketch the flower bed and label all of the side lengths.
Answer:
The length of the other side is 11 ft.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
Given the perimeter of the flower bed shaped pentagon is 57 inches
and the two sides of the flower bed each is 7 inches long
and the other two sides of the flower bed each is 16 inches long
the other side of the flower bed be X
the perimeter of the flower bed is
p = 7+7+16+16+X
57= 46+X
X= 11 in.
The length of the other side is 11 ft.

Find Unknown Side Lengths Homework & Practice 15.3

Find the unknown side length.

Question 1.
Perimeter = 24 feet
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 77
d = ___
Answer:
The length of the unknown side is 8 ft.

Explanation:
The perimeter of the triangle is 24 ft,
and the lengths of the sides is 10 ft, 6 ft, d ft
so the perimeter of the triangle is
p = 10+6+d
24 = 10+6+d
24 = 16+d
d = 24 – 16
=  8 ft.
The length of the unknown side is 8 ft.

Question 2.
Perimeter = 46 inches
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 78
k = ___
Answer:
The length of the unknown side is 15 in.

Explanation:
The perimeter of the figure is 46 inches,
and the lengths of the sides is 13 in, 5 in, 13 in, k in
so the perimeter of the figure is
p = 13+5+13+k
46 = 31+k
46-31 = k
k = 15
=  15 in.
The length of the unknown side is 15 in.

Question 3.
Perimeter = 21 centimeters
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 79
y = ___
Answer:
The length of the unknown side is 7 cm.

Explanation:
The perimeter of the figure is 21 cm,
and the lengths of the sides is 4 cm, 1 cm, 9 cm, y cm
so the perimeter of the figure is
p = 4 cm+ 1 cm+ 9 cm+ y cm
21 = 14+ y
y = 21 – 14
y = 7
=  7 cm.
The length of the unknown side is 7 cm.

Question 4.
Perimeter = 41 meters
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 80
y = ___
Answer:
The length of the unknown side is 8 m.

Explanation:
The perimeter of the figure is 41 m,
and the lengths of the sides is 3 m, 12 m, 10 m, 8 m, y m
so the perimeter of the figure is
p = 3+12+10+8+y
41 = 33 + y
y = 41-33
y = 8
=  8 m.
The length of the unknown side is 8 m.

Question 5.
Perimeter = 12 feet
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 81
d = ___
Answer:
The length of the sides of the triangle is 4 ft.

Explanation:
The perimeter of the triangle is 12 feet,
and the length of the side of the triangle is d ft,
so the perimeter of the triangle is
p = 3 a
12 = 3 × d
d = 12/3
= 4 ft.
The length of the sides of the triangle is 4 ft.

Question 6.
Perimeter = 50 inches
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 82
k = ___
Answer:
The length of the sides of the Hexagon is 4 in.

Explanation:
The perimeter of the Hexagon is 50 inches,
and the length of the side of the Hexagon is k in,
so the perimeter of the hexagon is
p = 5 a
50 = 5 × k
k = 50/5
= 10 in.
The length of the sides of the triangle is 10 in.

Question 7.
DIG DEEPER!
Each polygon has equal side lengths that are whole numbers. Which polygon could have a perimeter of 16 centimeters? Explain.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 83
Answer:
The length of the sides of the octagon is 2 cm.

Explanation:
In the above three polygons, the second figure is an octagon, which has eight sides.
and the perimeter of the octagon is
p = 8 a
16 cm = 8 a
a = 16 /8
= 2 cm.

Question 8.
Number Sense
The area of a square is 25 square inches. What is its perimeter?
Answer:
The perimeter of the square is 20 inches.

Explanation:
The area of the square is 25 square inches, so
area = s^2
25 = s^2
s= 5 inches
so the perimeter of the square is
p = 4s
= 4×5
= 20 inches.

Question 9.
Modeling Real Life
The perimeter of the rectangular side walk is 260 meters. What are the lengths of the other three sides?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 84
Answer:
The length of the other three sides is 10 m,10m,120 m.

Explanation:
The perimeter of the rectangular side walk is 260 meters,
and the length of the one side of the side walk is 120 m,
so the perimeter of the rectangular side walk is
p = 2( length + breadth)
260 = 2 ( 120 + breadth)
260/2 = 120 + breadth
130 = 120 + breadth
breadth = 130 – 120
= 10 m.
The length of the other three sides is 10 m,10m,120 m.

Question 10
Modeling Real Life
Two rectangular tables are pushed together. The perimeter is 40 feet. What are the lengths of the other three sides?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 85
Answer:
The other length of the side of the small rectangle is 3 ft.
The other length of the side of the big rectangle is 5 ft.

Explanation:
Given the perimeter of the apartment is 40 feet,
first, we will take the big rectangle,
as the opposite sides of the rectangle are equal
and the length of the big rectangle is 5 ft
so the other length is also 5 ft.
as the perimeter of the small rectangle is 10 ft
and the length of the one side of the rectangle is 2 ft
so the other length of the small rectangle is
p = 2(length+breadth)
10 = 2(2 + breadth)
10/2 = 2+ breadth
5= 2 + breadth
breadth= 5 – 2
= 3 ft.
The other length of the side is 3 ft.

Review & Refresh

Write the time. Write another way to say the time.

Question 11.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 86
Answer:
06: 48

Explanation:
Another way to say time is 06: 48

Question 12.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 87
Answer:
03: 24

Explanation:
Another way to say time is 03: 24

Question 13.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 88
Answer:

Explanation:
Another way to say the time is 11: 48

Lesson 15.4 Same Perimeter, Different Areas

Use color tiles to create two different rectangles that each have a perimeter of 16 units. Then draw your rectangles and label their dimensions. Do the rectangles have the same area? Explain how you know.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 89

Answer:
No, the area of rectangle 1 and rectangle 2 is not the same.

Explanation:

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
Given the perimeter of the rectangle is 16 units
The length of rectangle 1 is 5 units
and the breadth of rectangle 1 is 3 units
so the area of rectangle 1 is
area = length × breadth
= 5×3
= 15 square units.
The length of rectangle 2 is 6 units
and the breadth of rectangle 2 is 2 units
so the area of rectangle 2 is
area = length × breadth
= 6×2
= 12 square units.
No, the area of rectangle 1 and rectangle 2 is not the same.

Repeated Reasoning
Draw another rectangle that has the same perimeter but different dimensions. Compare the area of the new rectangle to the rectangles above. What do you notice?
Answer:
No, the area of rectangle 1 and rectangle 2 is not the same.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
The length of rectangle 1 is 4 units
and the breadth of rectangle 1 is 3 units
the perimeter of rectangle 1 is
p= 2(length+breadth)
= 2(4+3)
= 2(7)
= 14 units.
so the area of rectangle 1 is
area = length × breadth
= 4×3
= 12 square units.
The length of rectangle 2 is 5 units
and the breadth of rectangle 2 is 2 units
the perimeter of rectangle 1 is
p= 2(length+breadth)
= 2(5+2)
= 2(7)
= 14 units.
so the area of rectangle 2 is
area = length × breadth
= 5×2
= 10 square units.
No, the area of rectangle 1 and rectangle 2 is not the same.

Think and Grow : Same Perimeter, Different Areas

Example :
Find the perimeter and the area of Rectangle A. Draw a different rectangle that has the same perimeter. Which rectangle has the greater area?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 90
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 91
Rectangle ___ has a greater area.
Answer:
The perimeter of the rectangle A is 20 m
and the area of the rectangle A is 24 m2
The perimeter of rectangle B is 20 m
and the area of the rectangle B is 16 m2
The rectangle A has a greater area.

Explanation:
Given the length of the rectangle is 6m
and the breadth of the rectangle is 4m,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(6 + 4)
= 2(10)
= 20 m.
And the area of the rectangle is
a = length × breadth
= 6 × 4
= 24 m2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure another rectangle with a length of 8m,
and the breadth is 2m,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(8 + 2)
= 2(10)
= 20 m.
And the area of the rectangle is
area = length × breadth
= 8×2
= 16 m2
So the rectangle A has a greater area.

Show and Grow

Question 1.
Find the perimeter and area of Rectangle A. Draw a different rectangle that has the same perimeter. Which rectangle has the greater area?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 92
Perimeter = ___
Area = ___
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 93
Perimeter = ___
Area = ___
Rectangle ___ has the greater area.
Answer:The perimeter of the rectangle A is 14 in
and the area of the rectangle A is 10 in2
The perimeter of rectangle B is 14 in
and the area of the rectangle B is 12 in2
The rectangle B has a greater area.

Explanation:
Given the length of the rectangle is 5 in
and the breadth of the rectangle is 2 in,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(5 + 2)
= 2(7)
= 14 in.
And the area of the rectangle is
a = length × breadth
= 5×2
= 10 in2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure another rectangle with a length of 4 in,
and the breadth is 3 in,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(4 + 3)
= 2(7)
= 14 in.
And the area of the rectangle is
area = length × breadth
= 4×3
= 12 in2
So the rectangle B has a greater area.

Apply and Grow: Practice

Find the perimeter and area of Rectangle A. Draw a different rectangle that has the same perimeter. Which rectangle has the greater area?

Question 2.
Rectangle A
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 94
Perimeter = ___
Area = ___
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 95
Perimeter = ___
Area = ___
Rectangle ___ has the greater area.
Answer:
The perimeter of the rectangle A is 22 cm
and the area of the rectangle A is 11 cm2
The perimeter of rectangle B is 22 cm
and the area of the rectangle B is 30 cm2
The rectangle B has a greater area.

Explanation:
Given the length of the rectangle is 10 cm,
and the breadth of the rectangle is 1 cm,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(10 + 1)
= 2(11)
= 22 cm.
And the area of the rectangle is
a = length × breadth
= 11 × 1
= 11 cm2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure another rectangle with a length of 6 cm,
and the breadth is 5 cm,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(6 + 5)
= 2(11)
= 22 cm.
And the area of the rectangle is
area = length × breadth
= 6×5
= 30 cm2
So the rectangle B has a greater area.

Question 3.
Rectangle A
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 96
Perimeter = ___
Area = ___

Rectangle B
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 97
Perimeter = ___
Area = ___
Rectangle ___ has the greater area
Answer:
The perimeter of the rectangle A is 20 m
and the area of the rectangle A is 21 m2
The perimeter of rectangle B is 20 m
and the area of the rectangle B is 24 m2
The rectangle B has a greater area.

Explanation:
Given the length of the rectangle is 7 m,
and the breadth of the rectangle is 3 m,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(7 + 3)
= 2(10)
= 20 m.
And the area of the rectangle is
a = length × breadth
= 7 × 3
= 21 m2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure another rectangle with a length of 6 m,
and the breadth is 4 m,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(6 + 4)
= 2(10)
= 20 m.
And the area of the rectangle is
area = length × breadth
= 6×4
= 24 m2
So the rectangle B has a greater area.

Question 4.
MP Structure
Draw a rectangle that has the same perimeter as the one shown, but with a lesser area. What is the area ?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 98

Answer:
The perimeter of the rectangle A is 26 ft
and the area of the rectangle A is 40 ft2
The perimeter of rectangle B is 26 ft
and the area of the rectangle B is 30 ft2
The rectangle B has a greater area.

Explanation:
Given the length of the rectangle is 5 ft,
and the breadth of the rectangle is 8 ft,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(5 + 8)
= 2(13)
= 26 ft.
And the area of the rectangle is
a = length × breadth
= 5 × 8
= 40 ft

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure another rectangle with a length of 10 ft,
and the breadth is 3 ft,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(10 + 3)
= 2(13)
= 26 ft.
And the area of the rectangle is
area = length × breadth
= 10×3
= 30 ft2
So the rectangle A has a greater area.

Think and Grow: Modeling Real Life

A paleontologist has 12 meters of twine to rope off a rectangular section of the ground. How long and wide should she make the roped-off section so it has the greatest possible area?
Draw to show:
She should make the roped-off section ___ meters long and ___ meters wide.
Answer:
She should make the roped-off section 4 meters long and 2 meters wide.

Explanation:
Given that a paleontologist has 12 meters of twine to rope off a rectangular section,
so if we take the length as 4 m and width as 2 m then we can get the greatest possible area,
so the area of the rectangular section is
area = length × breadth
= 4 m ×2 m
= 8 m2

Show and Grow

Question 5.
Newton has 16 feet of wood to make a rectangular sandbox. How long and wide should he make the sandbox so it has the greatest possible area?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 99
Answer:
The greatest possible area of the rectangular sandbox is 15 ft2

Explanation:
As Newton has 16 feet of wood to make a rectangular sandbox,
so let the length be 5 ft and the wide be 3 ft to get the greatest possible area,
so the area of the rectangular sandbox is
area = length × breadth
= 5 ft × 3 ft
= 15 ft2
The greatest possible area of the rectangular sandbox is 15 ft2

Question 6.
DIG DEEPER!
You and Newton are building forts. You each have the same length of rope to make a rectangular perimeter for the forton the ground. Your roped-off section is shown. Newton’s section has a greater area than yours. Draw one way Newton could rope off his fort.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 100

Descartes also builds a fort. He has the same length of rope as you to make a perimeter around his fort. Descartes’s roped-off section has a lesser area than yours. Draw one way Descartes could rope off his fort.

Answer:
Refer the below for detailed explanation.

Explanation:
The length of the rope is 7 ft
and the breadth of the rope is 3 ft
the perimeter is
p = 2(length+breadth)
= 2(7+3)
= 2(10)
= 20 ft.
The area of the rectangle is
area= length×breadth
= 7×3
= 21 square feet.

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
Let the length of the Newton’s rope is 6 ft
and the breadth of the Newton’s rope is 4 ft
the perimeter is
p = 2(length+breadth)
= 2(6+4)
= 2(10)
= 20 ft.
The area of the rectangle is
area= length×breadth
= 6×4
= 24 square feet.
And here Newton’s area is greater.

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

Let the length of the Descarte’s rope is 8 ft
and the breadth of the Descarte’s rope is 2 ft
the perimeter is
p = 2(length+breadth)
= 2(8+2)
= 2(10)
= 20 ft.
The area of the rectangle is
area= length×breadth
= 8×2
= 16 square feet.
And here Descartes area is lesser.

Same Perimeter, Different Areas Homework & Practice 15.4

Question 1.
Find the perimeter and the area of Rectangle A. Draw a different rectangle that has the same perimeter? Which rectangle has the greater area?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 101
Perimeter = ___
Area = ___
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 102
Perimeter = ___
Area = ___
Rectangle __ has the greater area.
Answer:
The perimeter of the rectangle A is 7 cm
and the area of the rectangle A is 24 cm2
The perimeter of rectangle B is 26 ft
and the area of the rectangle B is 30 ft2
The rectangle B has a greater area.

Explanation:
Given the length of the rectangle is 7 cm,
and the breadth of the rectangle is 5 cm,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(7 + 5)
= 2(12)
= 24 cm.
And the area of the rectangle is
a = length × breadth
= 7 × 5
= 35 cm2.

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure rectangle with a length of 6.5 cm,
and the breadth is 5.5 cm,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(6.5 + 5.5)
= 2(12)
= 24 ft.
And the area of the rectangle is
area = length × breadth
= 6.5×5.5
= 35.75 square feet
So the rectangle B has a greater area.

Question 2.
Patterns
Complete the pattern. Find the area of each rectangle.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 103
Each rectangle has the same perimeter. As the area increases, what do you notice about the shape of the rectangle?
Answer:
As the area increases the shape of the figure was changed, we can see the figure was changed from rectangle to square.

Explanation:
As we know that the perimeter of the above figure is the same,
so the perimeter of the above figures is
p = 2 (length + breadth)
= 2 (1 m+9 m)
= 2(10 m)
= 20 m.
So, the perimeter of the above figures is 20 m.
The area of figure 1 is
area = length × breadth
= 1 m × 9 m
= 9 m2.
The area of figure 2 is
= 8m × 2m
= 16 m2.
The area of figure 3 is
= 7m × 3m
= 21 m2.
Let the length of figure 4 be 6m and the breadth be 4m,
The area of figure 4 is
= 6m × 4m
= 24 m2.
Let the length of figure 5 be 5m and the breadth be 5m,
The area of figure 5 is
= 5m × 5m
= 25 m2.

Question 3.
Modeling Real Life
You are making a card with a 36-centimeter ribbon border. How long and wide should you make the card so you have the greatest possible area to write?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 104
Answer:
The length and the breadth of the card is 9 cm.

Explanation:
Given the perimeter of the card with a ribbon border is 36 cm
so the length of the card is
p =4a
36 = 4a
a= 36/4
= 9 cm.
The length and the breadth of the card is 9 cm.
The area of the card is
a = length×breadth
= 9×9
= 81 square cm.

Question 4.
DIG DEEPER!
A school has two rectangular playgrounds that each have the same perimeter. The first playground is shown. The second has a lesser area than the first. Draw one way the second playground could look.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 105

The school builds another playground. It has the same perimeter as the first. The third playground has a greater area than the first. Draw one way the third playground could look
Answer:

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

Review & Refresh

Question 5.
2 × 30 = ___
Answer:
60

Explanation:
On multiplying 2 × 30 we will get 60.

Question 6.
6 × 20 = ___
Answer:
120

Explanation:
On multiplying 6 × 20 we will get 120.

Question 7.
3 × 90 = ___
Answer:
270

Explanation:
On multiplying 3 × 90 we will get 270.

Lesson 15.5 Same Area, Different Perimeters

Explore and Grow

Use color tiles to create two different rectangles that each have an area of 18 square units. Then draw your rectangles and label their dimensions. Do the rectangles have the same perimeter? Explain how you know
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 106

Answer:
By comparing the perimeters of both rectangles, we can see that the perimeters are not the same.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
In the above figure, we can see two colored rectangles
the length of rectangle 1 is 6 units
and the breadth of rectangle 1 is 3 units
so the perimeter of rectangle 1 is
p = 2(length+breadth)
= 2(6+3)
= 2(9)
= 18 units
and the area of rectangle 1 is
area= length×breadth
= 6×3
= 18 square units
The length of rectangle 2 is 9 units
and the breadth of rectangle 2 is 2 units
so the perimeter of rectangle 2 is
p = 2(length+breadth)
= 2(9+2)
= 2(11)
= 22 units.
and the area of rectangle 2 is
area= length×breadth
= 9×2
= 18 square units.
By comparing the perimeters of both rectangles, we can see that the perimeters are not the same.

Repeated Reasoning
As the perimeter increases and the area stays the same, what do you notice about the shape of the rectangle?

Think and Grow : Same Area, Different Perimeters

Example
Find the area and the perimeter of Rectangle A. Draw a different rectangle that has the same area. Which rectangle has the lesser perimeter?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 107
Area = 2 × 6
= _____
Perimeter = 6 + 2 + 6 + 2
= ______
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 108
Area = ___ × ___
= ____
Perimeter = ___ + ___ + ___ + ___
= ____
Rectangle ___ has the lesser perimeter.
Answer:
The perimeter of the rectangle A is 16 ft
and the area of the rectangle A is 12 ft2
The perimeter of rectangle B is 14 ft
and the area of the rectangle B is 12 ft2
The rectangle A has a lesser area.

Explanation:
Given the length of the rectangle is 6 ft,
and the breadth of the rectangle is 2 ft,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(6 + 2)
= 2(8)
= 16 ft.
And the area of the rectangle is
a = length × breadth
= 6 × 2
= 12 ft2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
we can see in the above figure rectangle B and the length be 4 ft,
and the breadth be 3ft,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(4 + 3)
= 2(7)
= 14 ft.
And the area of the rectangle is
area = length × breadth
= 4×3
= 12 ft2
So the rectangle A has a lesser area.

Show and Grow

Question 1.
Find the area and the perimeter of Rectangle A. Draw a different rectangle that has the same area. Which rectangle has the lesser perimeter?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 109
Area = ___
Perimeter = ___
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 110
Area = ___
Perimeter = ___
Rectangle __ has the lesser perimeter.
Answer:
The perimeter of the rectangle A is 16 ft
and the area of the rectangle A is 12 ft2
The perimeter of rectangle B is 14 ft
and the area of the rectangle B is 12 ft2
The rectangle A has a lesser area.

Explanation:
Given the length of the rectangle is 6 cm,
and the breadth of the rectangle is 6 cm,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(6 + 6)
= 2(12)
= 24 cm.
And the area of the rectangle is
a = length × breadth
= 6 × 6
= 36 cm2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure rectangle B and the length be 9 cm,
and the breadth be 4 cm,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(9 + 4)
= 2(13)
= 26 cm.
And the area of the rectangle is
area = length × breadth
= 9×4
= 36 cm2
So the rectangle A has a lesser perimeter.

Apply and Grow: Practice

Find the area and the perimeter of Rectangle A. Drawa different rectangle that has the same area. Which rectangle has the lesser perimeter?
Answer:

Question 2.
Rectangle A
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 111
Area = ___
Perimeter = ___
Rectangle B
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 112
Area = ___
Perimeter = ___
Rectangle ___ has the lesser perimeter.
Answer:
The perimeter of the rectangle A is 24 in
and the area of the rectangle A is 20 in2
The perimeter of rectangle B is 18 in
and the area of the rectangle B is 20 in2
The rectangle B has a lesser perimeter.

Explanation:
Given the length of the rectangle is 10 in,
and the breadth of the rectangle is 2 in,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(10 + 2)
= 2(12)
= 24 in.
And the area of the rectangle is
a = length × breadth
= 10 × 2
= 20 in2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure rectangle B and the length be 5 in,
and the breadth be 4 in,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(5 + 4)
= 2(9)
= 18 in.
And the area of the rectangle is
area = length × breadth
= 5×4
= 20 in2
So the rectangle B has a lesser perimeter.

Question 3.
Rectangle A
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 113
Area = ___
Perimeter = ___
Rectangle B
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 114
Area = ___
Perimeter = ___
Rectangle ___ has the lesser perimeter.
Answer:
The perimeter of the rectangle A is 12 m
and the area of the rectangle A is 8 m2
The perimeter of rectangle B is 18 m
and the area of the rectangle B is 8 m2
The rectangle A has a lesser perimeter.

Explanation:
Given the length of the rectangle is 4 m,
and the breadth of the rectangle is 2 m,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(4 + 2)
= 2(6)
= 12 m.
And the area of the rectangle is
a = length × breadth
= 4 × 2
= 8 m2

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

we can see in the above figure rectangle B and the length be 8 m,
and the breadth be 1 m,
so the perimeter of the rectangle is
p = 2(length + breadth)
= 2(8+ 1)
= 2(9)
= 18 m.
And the area of the rectangle is
area = length × breadth
= 8×1
= 8 m2
So the rectangle A has a lesser perimeter.

Question 4.
DIG DEEPER!
The perimeter of a blue rectangle is 10 feet. The perimeter of a green rectangle is 14 feet. Both rectangles have the same area. Find the area and the dimensions of each rectangle.
Answer:

Explanation:
Given the perimeter of the blue rectangle is 10 ft and
the perimeter of the green rectangle is 14 ft

Think and Grow: Modeling Real Life

You have 40 square patio bricks that are each 1 foot long and 1 foot wide. You want to make a rectangular patio with all of the bricks. How long and wide should you make the patio so it has the least possible perimeter?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 115
Draw to show:
You should make the patio ___ feet long and ___ feet wide.
Answer:
You should make the patio 8 feet long and 5 feet wide.
The least possible perimeter is 26 feet.

Explanation:
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area
As there are 40 square patio bricks and each brick is 1 foot long and 1 foot wide
so to make a rectangular patio we need
the length of the rectangular patio be 8 feet
and the breadth of the rectangular patio be 5 feet
so the perimeter of the rectangular patio is
p= 2(length+breadth)
= 2(8+5)
= 2(13)
= 26 feet.
The least possible perimeter is 26 feet.

Show and Grow

Question 5.
Your friend has 16 square foam tiles that are each 1 foot long and 1 foot wide. He wants to make a rectangular exercise space with all of the tiles. How long and wide should he make the exercise space so it has the least possible perimeter?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 116
Answer:
The least possible perimeter is 16 feet.

Explanation:
As there are 16 square foam tiles and each foam tile is 1 foot long and 1 foot wide
so to make an exercise space we need
the length of the exercise space be 4 feet
and the breadth of the exercise space be 4 feet
so the perimeter of the exercise space is
p= 2(length+breadth)
= 2(4+4)
= 2(8)
= 16 feet.
The least possible perimeter is 16 feet.

Question 6.
DIG DEEPER!
You and your friend each use fencing to make a rectangular playpen for a puppy. Each pen has the same area. Your pen is shown. Your friend’s pen uses less fencing than yours. Draw one way your friend could make her pen.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 117

Your cousin makes a playpen for a puppy. His pen has the same area as your pen. Your cousin’s pen uses more fencing than yours. Draw one way your cousin could make his pen.
Answer:

 

Same Area, Different Perimeters Homework & Practice 15.5

Question 1.
Find the area and the perimeter of Rectangle A. Drawa different rectangle that has the same area. Which rectangle has the lesser perimeter?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 118
Area = ___
Perimeter = ___
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 119
Area = ___
Perimeter = ___
Rectangle __ has the lesser perimeter.
Answer:
The perimeter of rectangle A is 4 in
and the area of rectangle A is 20 square inches.
It is not possible to draw a rectangle that has the same area and different perimeter.

Explanation:
Given the length of the rectangle is 4 in,
and the breadth of the rectangle is 4 in,
so the perimeter of the rectangle is
p = 2( length + breadth)
= 2(4+4)
= 2(8)
= 16 in.
And the area of the rectangle is
a = length × breadth
= 4 × 4
= 16 square inches.

Question 2.
Structure
The dimensions of a rectangle are 4 feet by 10 feet. Which shape has the same area, but a different perimeter?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 120
Answer:
The yellow shape rectangle has the same area and different perimeter.

Explanation:
Given the dimensions of the rectangle are 4 feet by 10 feet
so the perimeter of the rectangle is
p= 2(length+breadth)
= 2(4+10)
= 2(14)
= 28 feet.
The area of the rectangle is
area = length×breadth
= 10×4
= 40 square feet.
Here, we can see the yellow rectangle has a length of 8 feet
and the breadth of the rectangle is 5 feet
so the perimeter of the rectangle is
p = 2(length+beadth)
= 2(8+5)
= 2(13)
= 26 feet.
and the area of the rectangle is
area = length×breadth
= 8×5
= 40 square feet.

Question 3.
MP Reasoning
The two fields have the same area. Players run one lap around each field. At which field do the players run farther?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 121
Answer:
As the perimeter of field A is greater than field B so in field A the players run father.

Explanation:
Let the length of field A is 10m
and the breadth of field A is 2m
so the perimeter of field A is
p = 2(length+breadth)
= 2(10+2)
= 2(12)
= 24 m.
and the area of field A is
area= length×breadth
= 10×2
= 20 square meters.
Let the length of field B is 5m
and the breadth of field B is 4m
so the perimeter of field B is
p = 2(length+breadth)
= 2(5+4)
= 2(9)
= 18 m.
and the area of field A is
area= length×breadth
= 5×4
= 20 square meters.
As the perimeter of field A is greater than field B so in field A the players run father.

Question 4.
Modeling Real Life
You have 24 square pieces of T-shirt that are each 1 foot long and 1 foot wide. You want to make a rectangular T-shirt quilt with all of the pieces. How long and wide should you make the quilt so it has the least possible perimeter?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 122
Answer:
The least possible perimeter is 20 feet.

Explanation:
As there are 24 square pieces of T-shirt and each was 1 foot long and 1 foot wide
so to make a rectangular T-shirt quilt with all of the pieces we need
the length of the rectangular T-shirt quilt be 6 feet
and the breadth of the rectangular T-shirt quilt be 4 feet
so the perimeter of the rectangular T-shirt quilt is
p= 2(length+breadth)
= 2(6+4)
= 2(10)
= 20 feet.
The least possible perimeter is 20 feet.

Question 5.
DIG DEEPER!
You and Descartes each have40 cobblestone tiles to arrange in to a rectangular pathway. Your pathway is shown. Descartes’s pathway has a lesser perimeter than yours. Draw one way Descartes could make his pathway.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 123
Newton also makes a rectangular pathway with 40 cobblestone tiles. His pathway has a greater perimeter than yours. Draw one way Newton could make his pathway.
Answer:

Review & Refresh

Identify the number of right angles and pairs of parallel sides.

Question 6.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 124
Right angles: ___
Pairs of Parallel sides: ___
Answer:
Right angles: 1
Pairs of Parallel sides: 2.

Explanation:
In the above figure, we can see there are the right angle is 1, and the pairs of parallel sides are 2.

Question 7.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 125
Right angles: ___
Pairs of parallel sides: ____
Answer:
Right angles: 4.
Pairs of Parallel sides: 2.

Explanation:
In the above figure, we can see there are the right angle is 4, and the pairs of parallel sides are 2.

Find Perimeter and Area Performance Task

You and your cousin build a tree house.

Question 1.
The floor of the tree house is in the shape of a quadrilateral with parallel sides that are 4 feet long and 10 feet long. The other 2 sides are equal in length. The perimeter is 24 feet. Sketch the floor and label all of the side lengths.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 151
Answer:
The length of the sides is 6 feet.

Explanation:
The perimeter of the floor is 24 feet
so the length of the floor be 6 feet
as the two other sides are also equal
so the other side length also be 6 feet
and let’s check the perimeter
p = 2(length+breadth)
= 2(6+6)
= 2(12)
= 24 feet.

Question 2.
Each rectangular wall of the tree house is 5 feet tall. How many square feet of wood is needed for all of the walls?
Answer:

Explanation:

Question 3.
You cut out a door in the shape of a rectangle with sides that are whole numbers. Its area is 8 square feet. What is the height of the door?
Answer:
The height of the rectangular door is 4 feet.

Explanation:
The area of the rectangular shape door is 8 square feet
as the sides of the rectangular door are whole numbers
so the length rectangular door be 4 feet
and the breadth be 2 feet
then we can get the area 8 square feet
let’s check the area
area = length×breadth
= 4×2
= 8 square feet.
So the height of the rectangular door is 4 feet.

Question 4.
You want to paint the floor and walls on the inside of your tree house. The area of the floor is 28 square feet. Each quart of paint covers 100 square feet.
a. How many quarts of paint do you need to buy?
b. Do you have enough paint to paint the outside walls of the tree house? Explain.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 152
Answer:
a. 2,800 square feet quarts of paint we need to buy.

Explanation:
a. The area of the floor is 28 square feet and each quart of paint covers 100 square feet, so we need to buy
28×100= 2,800 square feet quarts of paint.

b.

Find Perimeter and Area Activity

Perimeter Roll and Conquer
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 153
Directions:
1. Players take turns rolling two dice.
2. On your turn, draw a rectangle on the board using the numbers on the dice as the side lengths. Your rectangle cannot cover another rectangle.
3. Write an equation tofind the perimeter of the rectangle.
4. If you cannot fit a rectangle on the board, then you lose your turn. Play 10 rounds, if possible.
5. Add all of your rectangles’ perimeters together. The player with the greatest sum wins!
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 154
Answer:

Explanation:

Find Perimeter and Area Chapter Practice

15.1 Understand Perimeter

Find the perimeter of the figure

Question 1.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 156
Perimeter = ___
Answer:
The perimeter of the rectangle is 18 cm.

Explanation:
In the above figure, we can see the rectangle
with a length of 5 cm,
and the breadth of 4 cm
the perimeter of the rectangle is
p = 2 (length + breadth)
= 2 (5+4)
= 2(9)
= 18 cm.

Question 2.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 157
Perimeter = ___
Answer:
The perimeter of the figure is 26 ft.

Explanation:
To find the perimeter of the above figure,
we will add the lengths of all sides of the figure
the sides of the above figure is 2 ft, 8 ft, 3 ft, 2 ft, 2 ft, 2 ft, 1 ft, 1 ft, 2 ft, 3 ft
the perimeter of the above figure is
p = 2+8+3+2+2+2+1+1+2+3
= 26 ft.

Question 3.
Draw a figure that has a perimeter of 10 inches.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 158
Answer:

15.2 Find Perimeter of Polygons

Find the perimeter of the polygon

Question 4.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 159
Perimeter = ___
Answer:
The perimeter of the polygon is 33 cm.

Explanation:
To find the perimeter of the polygon, we will add all the sides of the polygon
so the sides of the polygon are 9 cm, 6 cm, 8 cm, 10 cm
the perimeter of the polygon is
p = 9 cm +6 cm +8 cm +10 cm
= 33 cm.

Question 5.
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 160
Perimeter = ___
Answer:
The perimeter of the figure is 27 ft.

Explanation:
To find the perimeter of the figure, we will add all the sides of the figure
so the sides of the perimeter is 5 ft, 11 ft, 7 ft, 3 ft, 1 ft
the perimeter of the figure is
p = 5 ft+11 ft+ 7 ft+3 ft+1 ft
= 27 ft.

Question 6.
Parallelogram
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 161
Perimeter = ___
Answer:
The perimeter of the parallelogram is 12 m.

Explanation:
Given the length of the parallelogram is 4 m
and the breadth of the parallelogram is 2 m
the perimeter of the parallelogram is
p = 2 (length + breadth)
= 2( 4 m+ 2 m)
= 2(6 m)
= 12 m

Find the perimeter of the polygon

Question 7.
Rhombus
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 162
Perimeter = ___
Answer:
The perimeter of the rhombus is 36 cm.

Explanation:
Given the length of the side of the rhombus is 9 cm
and the perimeter of the rhombus is
p = 4a
= 4× 9 cm
= 36 cm.

Question 8.
Rectangle
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 163
Perimeter = ___
Answer:
The perimeter of the rectangle is 26 in.

Explanation:
The length of the rectangle is 5 inch
and the breadth of the rectangle is 8  inch
the perimeter of the rectangle is
p = 2( length + breadth)
= 2( 5 in+ 8 in)
= 2(13 in)
= 26 in.
So the perimeter of the rectangle is 26 in.

Question 9.
Square
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 164
Perimeter = ___
Answer:
The perimeter of the square is 28 ft.

Explanation:
The length of the square is 7 ft
so the perimeter of the square is
perimeter= 4a
= 4×7
= 28 ft.

Question 10.
Modeling Real Life 
You want to put lace around the tops of the two rectangular lampshades. How many centimeters of lace do you need?
Big Ideas Math Answer Key Grade 3 Chapter 15 Find Perimeter and Area 165
Answer:
We need 1,120 square centimeters.

Explanation:
The length of the rectangular lampshades is 35 cm
The breadth of the rectangular lampshades is 32 cm
and the area of the rectangular lampshades is
area= length×breadth
= 32×35
= 1,120 square cm.
So 1,120 square centimeters of lace you need.

15.3 Find Unknown Side Lengths

Find the unknown side length.

Question 11.
Perimeter = 22 feet
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 166
d = ____
Answer:
The length of the other side is 9 ft.

Explanation:
Given the perimeter of the above figure is 22 feet
and the length of the sides of the figure is 6 ft, 7 ft, d ft
so the perimeter of the figure is
p = 6 ft+ 7 ft+ d ft
22  ft = 13 ft + d ft
d = 22 ft – 13 ft
= 9 ft.
So, the length of the other side is 9 ft.

Question 12.
Perimeter = 31 inches
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 167
k = ___
Answer:
The length of the other side is 5 in.

Explanation:
Given the perimeter of the above figure is 31 inches
and the length of the sides of the figure is 10 in, 4 in, 12 in and k in.
so the perimeter of the figure is
p = 10 in+ 4 in+ 12 in+k in
31 in = 26 in + k in
k = 31 in – 26 in
= 5 in.
So, the length of the other side is 5 in.

Question 13.
Perimeter = 34 meters
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 168
y = ___
Answer:
The length of the other side is 7 m.

Explanation:
Given the perimeter of the above figure is 34 meters
and the length of the sides of the figure is 11 m, 8 m, 2 m, 1 m, 5 m, y m.
so the perimeter of the figure is
p = 11 m+ 8 m+ 2 m+ 1 m+ 5 m+ y m
34 m = 27 m + y m
y = 34 m – 27 m
= 7 m.
So, the length of the other side is 7 m.

Find the unknown side length.

Question 14.
Perimeter = 24 feet
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 169
k = ___
Answer:
The length of the sides of the triangle is 8 feet.

Explanation:
The perimeter of the triangle is 24 feet
and the perimeter of the triangle is
p = 3a
24 feet = 3a
a= 24/3
= 8 feet.
So, the length of the sides of the triangle is 8 feet.

Question 15.
Perimeter = 16 meters
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 170
y = ___
Answer:
The length of the sides of the square is 4 meters.

Explanation:
The perimeter of the triangle is 16 meters
and the perimeter of the triangle is
p = 4a
16 meters = 4a
a= 16/4
= 4 meters.
So, the length of the sides of the triangle is 4 meters.

Question 16.
Perimeter = 30 inches
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 171
d = ___
Answer:
The length of the sides of the pentagon is 6 inches.

Explanation:
The perimeter of the pentagon is 30 inches
and the perimeter of the pentagon is
p = 5a
30 inches = 5a
d= 30/5
= 6 inches.
So, the length of the sides of the pentagon is 6 inches.

Question 17.

Number Sense
A rectangle has a perimeter of 38 centimeters. The left side length is 10 centimeters. What is the length of the top side?
Answer:
The length of the top side is 9 cm.

Explanation:
Given the perimeter of the rectangle is 38 cm and
the left side length is 10 cm
Let the length of the top side be X, so
perimeter of the rectangle is
p = 2( length +breadth)
38 = 2(10+X)
38/2 = 10 + X
19 = 10 + X
X = 19 – 10
= 9 cm.
So the length of the top side is 9 cm.

15.4 Same Perimeter, Different Area

Question 18.
Find the perimeter and area of Rectangle A. Drawa different rectangle that has the same perimeter. Which rectangle has the greater area?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 172
Perimeter = ____
Area = ___
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 173
Perimeter = ____
Area = ___
Rectangle ___ has the greater area.
Answer:
The perimeter of the rectangle A is 14 m
The area of the rectangle A is 10 square meters
The perimeter of the rectangle B is 14 m
The area of the rectangle B is 12 square meters
The rectangle B has greater area.

Explanation:
The length of the rectangle is 5m
and the breadth of the rectangle is 2m
the perimeter of the rectangle is
p= 2(length+breadth)
= 2(5+2)
= 2(7)
= 14 m
and the area of the rectangle is
area = length×breadth
= 2×5
= 10 square meters.

Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area img 27

In the above image, we can see the length of the rectangle is 4 m
and the breadth of the rectangle is 3 m
so the perimeter of the rectangle is
p= 2(length+breadth)
= 2(4+3)
= 2(7)
= 14 m.
and the area of the rectangle is
area = length×breadth
= 4×3
= 12 square meters.
The rectangle B has greater area.

Question 19.
Patterns
Each Rectangle has the same perimeter. Are the areas increasing or decreasing ? Explain.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 174
Answer:
As we can see in the above images the length of the images was increasing one by one and the breadth is decreasing, so the areas increasing or decreasing will depend upon the breadth of the rectangle. So, if the breadth is also increasing then the area will also be increasing. And if the breadth was decreasing then the area will also be decreasing.

15.5 Same Area, Different Perimeters

Question 20.
Find the area and the perimeter of Rectangle A. Drawa different rectangle that has the same area. Which rectangle has the lesser perimeter?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 175
Area = ___
Perimeter = ___
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 176
Area = ___
Perimeter = ___
Rectangle ___ has the lesser perimeter.
Answer:
The perimeter of the rectangle A is 14 m
The area of the rectangle A is 10 square meters
The perimeter of the rectangle B is 14 m
The area of the rectangle B is 12 square meters
The rectangle B has greater area.

Explanation:
The length of the rectangle is 10 in
and the breadth of the rectangle is 5 in
the perimeter of the rectangle is
p= 2(length+breadth)
= 2(10+5)
= 2(15)
= 30 in
and the area of the rectangle is
area = length×breadth
= 10×5
= 50 square inches.

Question 21.
Reasoning
The two dirt-bike parks have the same area. Kids ride dirt bikes around the outside of each park. At which park do the kids ride farther ? Explain.
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 177
Answer:
As the length of the park B is longer, so at the park B kids rid farther than the park A.

Find Perimeter and Area Cumulative practice 1 – 15

Question 1.
A mango has a mass that is 369 grams greater than the apple. What is the mass of the mango?
A. 471 grams
B. 369 grams
C. 267 grams
D. 461 grams
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 178
Answer:
B.

Explanation:
The mass of the mango is 369 grams greater than apple

Question 2.
Which term describes two of the shapes shown, but all three of the shapes?
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 179
A. polygon
B. rectangle
C. square
D. parallelogram
Answer:
B, C, D.

Explanation:
In the above figures, we can see the parallelogram and the square. As the square is also known as a rectangle so we will choose option B also.

Question 3.
A rectangular note card has an area of 35 square inches. The length of one of its sides is 7 inches. What is the perimeter of the note card?
A. 5 inches
B. 24 inches
C. 84 inches
D. 12 inches
Answer:
The breadth of the rectangular note card is 24 inches.

Explanation:
The area of the rectangular note card is 35 square inches and the length of one of its sides is 7 inches
so the breadth of the rectangular note card is
area = length × breadth
35 = 7 × breadth
breadth = 35/7
= 5 inches.
The perimeter of the rectangular note card is
p = 2(length+breadth)
= 2(7+5)
= 2(12)
= 24 inches.
The breadth of the rectangular note card is 24 inches.

Question 4.
How many minutes are equivalent to4 hours?
A. 400 minutes
B. 240 minutes
C. 24 minutes
D. 40 minutes
Answer:
B

Explanation:
The number of minutes is equivalent to 4 hours is
4× 60= 240 minutes.

Question 5.
A balloon artist has 108 balloons. He has 72 white balloons, and an equal number of red, blue, green, and purple balloons. How many purple balloons does he have?
A. 36
B. 180
C. 9
D. 32
Big Ideas Math Answers 3rd Grade Chapter 15 Find Perimeter and Area 180
Answer:
9 balloons.

Explanation:
As a balloon artist has 108 balloons and he has 72 white balloons
and the remaining balloons are 108 – 72= 36 balloons
and an equal number of red, blue, green, and purple balloons
which means 36 balloons are equally divided by 4 colors of balloons, so
36÷4 = 9 balloons.
So the purple balloons are 9.

Question 6.
Which statements about the figures are true?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 181
Answer:
The shapes have different perimeters.
The shapes have the same area.

Explanation:
The length of the side of the square is 6 in,
and the perimeter of the square is
p = 4a
= 4×6 in
= 24 in
The area of the square is a^2
= 6 in×6 in
36 in^2.

Question 7.
The graph show many students ordered each lunch option.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 182
Part A How many students ordered lunch?
Part B Choose a lesser value for the key. How will the graph change?
Answer:
Part A: 60 students ordered lunch.
Part B: Turkey hot dog has a lesser value.

Explanation:
Part A:
The number of students who ordered lunch is
the grilled chicken was ordered by 21 students
Turkey hot dog was ordered by 9 students
A peanut butter and jelly sandwich was ordered by 12 students
the salad bar was ordered by 18 students
so the number of students who ordered lunch is
21+9+12+18= 60 students.

Part B:
The turkey hot dog was ordered by 9 students which is a lesser value.

Question 8.
Find the sum
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 183
Answer:
935

Explanation:
The sum of the above given numbers is 935

Question 9.
What is the perimeter of the figure?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 184
A. 26 units
B. 22 units
C. 20 units
D. 16 unit
Answer:
B

Explanation:
The sides of the figure is 2,4,1,2,1,1,2,2,1,1,2,1,1,1
and the perimeter of the figure is
p = 2+4+1+2+1+1+2+2+1+1+2+1+1+1
= 22 units.

Question 10.
Which bar graph correctly shows the data?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 185
Answer:
Graph B.

Explanation:
Graph B shows the correct graph data.

Question 11.
Which polygons have at least one pair of parallel sides?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 186
Answer:
Red color polygon.

Explanation:
The red color polygon has one pair of parallel sides, as it is a trapezoid.

Question 12.
The perimeter of the polygon is 50 yards. What is the missing side length?
A. 41 yards
B. 10 yards
C. 91 yards
D. 9 yards
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 187
Answer:
The missing side length is 9 yards.

Explanation:
Given the perimeter of the polygon is 50 yards
Let the missing side length be X yd
and the lengths of the sides of the polygon is 15 yds, 6 yds, 13 yds, 7 yds, and X yd,
So the perimeter of the polygon is
p = 15 yd+6 yd+13 yd+ 7 yd+ X yd
50 yards = 41 yards + X Yards
X = 9 yards.
So the missing side length is 9 yards.

Question 13.
Which line plot correctly shows the data?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 188
Answer:
A

Explanation:
Option A line plot shows the correct data.

Question 14.
Your friend is asked to draw a quadrilateral with four right angles. She says it can only be a square. Is she correct?
A. Yes, there is no other shape it can be.
B. No, it could also be a rectangle.
C. No, it could also be a hexagon.
D. No, it could also be a trapezoid.
Answer:
Yes, there is no other shape it can be.

Explanation:
Yes, she is correct. There is no other shape than the square with four right angles.

Question 15.
Which numbers round to480 when rounded to the nearest ten?
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 189
Answer:
484, 480, 478

Explanation:
The numbers that are rounded to 480 to the nearest ten is 484, 480, 478.

Find Perimeter and Area Cumulative Steam Performance Task 1 – 15

Question 1.
Use the Internet or some other resource to learn more about crested geckos.
a. Write three interesting facts about geckos.
b. Geckos need to drink water every day. Is this amount of water milliliters or liters? Explain.
c. Geckos can live in a terrarium. Is the capacity of this terrarium milliliters liters measured in or?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 190
Answer:
a) The three interesting facts about geckos are:
i) Geckos are a type of lizards and their toes help them to stick to any surface except Teflon.
ii) Gecko’s eyes are 350 times more sensitive than human eyes to light.
iii) Some of the pieces of Geckos have no legs and look more like snakes.

b) The number of water Geckos will have is in milliliters only as Geckos will not often drink water.

c)Yes, geckos can live in a terrarium and the capacity of this terrarium is between 120 liters to 200 liters.

Question 2.
Your class designs a terrarium for a gecko.
a. The base of the terrarium is a hexagon. Each side of the hexagon is 6 inches long. What is the perimeter of the base?
b. The terrarium is 20 inches tall. All of the side walls are made of glass. How many square inches of glass is needed for the terrarium?
c. Another class designs a terrarium with a rectangular base. All of its sides are equal in length. The base has the same perimeter as the base your class designs. What is the perimeter of the base? What is the area?
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 191
Answer:
a. 36 inches.
b.

Explanation:

a.
Given the length of the sides of the hexagon is 6 inches, and
the perimeter of the hexagon is
p = 6a
= 6 × 6
= 36 inches.

Question 3.
An online store sells crested geckos. The store owner measures the length of each gecko in the store. The results are shown in the table.
Big Ideas Math Solutions Grade 3 Chapter 15 Find Perimeter and Area 192
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 193
a. Use the table to complete the line plot.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area 194
b. How many geckos did the store owner measure?
c. What is the difference in the lengths of the longest gecko and the shortest gecko?
d. How many geckos are shorter than 6\(\frac{1}{4}\) inches?
e.The length of a gecko’s tail is about 3 inches. How would the line plot change if the store owner measured the length of each gecko without its tail?
Answer:
b. The number of geckos the store owner measures is 24.

d. 12

Explanation:

a.
Big Ideas Math Answers Grade 3 Chapter 15 Find Perimeter and Area

b. The number of geckos the store owner measures is 24.

d. The number of geckos shorter than 6\(\frac{1}{4}\) inches are 12.

Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions

Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions

Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions: It is very essential for the students to learn the fundamentals. In order to help the students, we are preparing the BIM Grade 3 Answer Key Chapter 10 Understand Fractions in the pdf format. Download Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions pdf for free. This will help you out to complete the homework, assessment in time.

Big Ideas Math Book 3rd Grade Answer Key Chapter 10 Understand Fractions

Get the Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions according to the topics from this page. Most of the students think that fractions are difficult but if you understand the concept it is a very easy chapter among all. We have provided the step by step explanation for all the topics in a simple manner. So go through it and start your preparation with love and joy.

Lesson 1: Equal Parts of a Whole

Equal Parts of a Whole

Lesson 2: Understand a Unit Fraction

Understand a Unit Fraction

Lesson 3: Write Fractions of a Whole

Lesson 4: Fractions on a Number Line: Less Than 1

Lesson 5: Fractions on a Number line: Greater Than 1

Fractions on a Number line: Greater Than 1

Performance Task

Lesson 10.1 Equal Parts of a Whole

Explore and Grow

Use the name of the equal parts to divide each rectangle. Write the number of equal parts for each rectangle.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 1
Repeated Reasoning
How many equal parts are in a rectangle that is divided into eighths? Explain.
Answer:

Think and Grow: Equal Parts of a Whole
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 2
The rectangle represents a whole. A whole is all of the parts of one shape or group.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 3
2 equal parts, or halves
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 4
3 equal parts, or thirds
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 5
4 equal parts, or fourths
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 6
6 equal parts, or sixths
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 7
8 equal parts, or eighths

Example
Tell whether the shape shows equal parts or unequal parts. If the shape shows equal parts, then name them.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 8
_____ parts.
_________
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 9
_____ parts.
_________

Show and Grow

Tell whether the shape shows equal parts or unequal parts. If the shape shows equal parts, then name them.

Question 1.

__6__ parts.

_____sixths____

Answer:
i) 6
ii) sixths

Explanation:
From the above figure, we can see that the rectangle is divided into 6 parts and the parts are named as sixths and they are unequal

Question 2.
Tell whether the shape shows equal parts or unequal parts. If the shape shows equal parts, then name them.

Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 11
____ parts.
_________

Answer:
i) 4
ii) Fourths

Explanation:
From the above figure, we can see that the rhombus is divided into 4 equal parts and the parts are named as fourths.

Question 3.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 12
_____ parts.
_________

Answer:
i) 3
ii)Thirds

Explanation:
From the above figure, we can see that the rectangle is divided into 3 equal parts and the parts are named as thirds. They become three rectangles

Question 4.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 13
_____ parts.
_________

Answer:
i) 8
ii)Eighths

Explanation:
From the above figure, we can see that the  Rectangle is divided into 8 equal parts and the parts are named as eighths.

Question 5.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 14
_____ parts.
_________

Answer:
i) 4
ii) Fourths

Explanation:
From the above figure, we can see that the rhombus is divided into 4 equal parts and the parts are named as fourths.

Question 6.
Big Ideas Math Solutions Grade 3 Chapter 10 Understand Fractions 15
_____ parts.
_________

Answer:
i) 6
ii) sixths

Explanation:
From the above figure, we can see that the circle is divided into 6 equal parts and the parts are named as sixths.They are equal in parts after dividing it becomes 6 equal triangles.

Question 7.
Divide the rectangle into 2 equal parts. Then name the equal parts.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 16

Answer:
When a rectangle is divided into two equal parts then it becomes two halfs.

Question 8.

Divide the square into 6 equal parts. Then name the equal parts.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 17
________

Answer:
i) sixths

Explanation:
From the above figure, we can see that the square is divided into 6 equal parts and the parts are named as sixths.

Question 9.
YOU BE THE TEACHER
Newton says he divided each shape into fourths. Is he correct? Explain.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 18

Answer:

From the above figures we can see that they are divided.
From figure one and two they are divided equally and they are named as fourths.
From the third figure the circle is not divided equally.

Think and Grow: Modeling Real Life

Three students want to share a whiteboard to solve math problems. Each student wants to use an equal part of the board. Should the students divide the whiteboard into halves, thirds, or fourths?

Draw to show:
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 19
The students should divide the whiteboard into ____.

Answer:
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions Draw to Show
The students should divide the whiteboard into three equal parts and name the parts as thirds.
As the whiteboard looks like a rectangle if we divide the rectangle into three equal parts then it becomes three rectangles

Show and Grow

Question 10.
Six friends want to share an egg casserole. Each friend wants an equal part. Should the friends cut the casserole into halves, fourths, or sixths?
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 20
Answer:
Friend should cut the egg casserole into six equal parts. And the name as sixths

Question 11.
Eight students need to sit around two tables. Each student needs an equal part of a table. Should the tables be divided into thirds, fourths, or sixths?
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 21

Answer:
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions Question 8

Explaination:
Each table should be divided into fourths as the eight students want to have equal parts

Question 12.
DIG DEEPER!
Ten friends want to share five rectangular sheets of paper. Each friend wants an equal part. Should the friend cut the sheets of paper into halves or thirds? Explain.

Answer:

The friends should cut each sheet into halves.
As there are five papers if one paper is cutting in two parts it becomes two halves similarly all five.
All five into halves becomes 10

Equal Parts of a Whole Homework & Practice 10.1

Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 22
1 equal part, or whole
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 23
2 equal parts, or halves
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 24
3 equal parts, or third
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 25
4 equal parts, or fourths
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 26
6 equal parts, or sixths
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 27
8 equal parts, or eighths

Tell whether the shape shows equal parts or unequal parts. If the shape shows equal parts, then name them.

Question 1.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 150
_____ parts.
_________

Answer
i) 6
ii) sixths

Explanation:
From the above figure, we can see that the rectangle is divided into 6 equal parts and the parts are named as sixths. They are equal.

Question 2.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 151
_____ parts.
_________

Answer:
i) 3
ii) thirds

Explanation:
From the above figure, we can see that the circle is divided into 3 unequal parts and the parts are named as fourths.

Question 3.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 152
_____ parts.
_________

Answer
i) 4
ii) Fourths

Explanation:
From the above figure, we can see that the hexagon is divided into 4 equal parts and the parts are named as fourths.

Question 4.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 153
_____ parts.
_________

Answer
i) 8
ii) eighths

Explanation:
From the above figure, we can see that the circle is divided into 8 equal parts and the parts are named as eighths.

Question 5.
Big Ideas Math Answer Key Grade 3 Chapter 10 Understand Fractions 154
_____ parts.
_________

Answer
i) 4
ii) Fourths

Explanation:
From the above figure, we can see that the rectangle is divided into 4 equal parts and the parts are named as fourths.

Question 6.
Big Ideas Math Answer Key Grade 3 Chapter 10 Understand Fractions 155
_____ parts.
_________

Answer
i) 3
ii) thirds

Explanation:
From the above figure, we can see that the triangle is divided into 3 unequal parts and the parts are named as thirds.

Question 7.
Divide the square into 3 equal parts. Then name the equal parts.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 28
_____

Explanation:
If the square is divided into three equal parts the name is thirds

Question 8.
Divide the triangle into 2 equal parts. Then name the equal parts.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 29
______

Explanation:
If the triangle is divided into two equal then it becomes two halves

Question 9.
Patterns
Use the pattern to divide the square into equal parts. Name the equal parts.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 30
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 31
_____

Answer:
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions Question 9

Explanation:
According to the pattern, the sixth square is divided into 4 parts Horizontally. The name of the equal part is fourths.

Question 10.
Modeling Real Life
Eight friends want to share a lasagna. Each friend wants an equal part. Should the friends cut the lasagna into fourths, sixths, or eighths?
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 32

Explanation:
From the above figure the lasagna is to be shared between 8 friends. In order to share we have to cut the lasagna in to eight equal parts.

Therefore it becomes eighths

Question 11.
DIG DEEPER!
Twelve friends want to pull weeds from three community gardens. Each friend wants to pull weeds from an equal part. Should the friends divide each garden into thirds, fourths, or sixths?

Answer: fourths

Explanation

As twelve friends want to pull weeds from three community gardens. They have to get equal parts each community garden should be divided into four parts.

As each garden divided into four equal parts 3gardens*4parts=12people

3*4=12

So,twelve people get equal parts.

Review & Refresh

Question 12.
2 × (3 × 3) = ___18

Question 13.
(4 × 2) × 9 = ____72

Question 14.
2 × (8 × 5) = ____80

Lesson 10.2 Understand a Unit Fraction

Explore and Grow

Match each shaded part to its name.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 33
Precision
What is the same about each shape? What is different?

Think and Grow: Understand a Unit Fraction

A fraction is a number that represents part of a whole.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 34
A unit fraction represents one equal part of a whole.

Example
What fraction of the whole is shaded?
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 35

Show and Grow

What fraction of the whole is shaded?

Question 1.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 36

Answer

i(one thirds)

Three equal parts

 

Explanation:
The above figure shows that the circle is divided into 3 parts equally in which 1 part is shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one thirds.

Question 2.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 37

Answer

i(one eighths)

Eight equal parts

Explanation:
The above figure shows that the square is divided into 8 parts equally in which 1 part are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one eighths.

Question 3.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 38

i(one halves)

Two equal parts

Explanation:
The above figure shows that the parallelogram is divided into 2 parts equally in which 1 parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one halves.

 

Apply and Grow: Practice

What fraction of the whole is shaded?

Question 4.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 39

i(one sixths)

Explanation:
The above figure shows that the rectangle is divided into 6 parts equally in which 1 parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one sixths.

Question 5.
Big Ideas Math Answers Grade 3 Chapter 10 Understand Fractions 40

iii (one fourths)

Explanation:
The above figure shows that the ellipse is divided into 4 parts equally in which one parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one fourths.

Question 6.
Big Ideas Math Answers 3rd Grade Chapter 10 Understand Fractions 41

iii (one halves)

Explanation:
The above figure shows that the hexagon is divided into 2 parts equally in which one parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one halvess.

Question 7.
Big Ideas Math Answers 3rd Grade Chapter 10 Understand Fractions 42

iii (one eighths)

Explanation:
The above figure shows that the rhombus is divided into 8 parts equally in which one parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one eighths.

Question 8.
Big Ideas Math Answers 3rd Grade Chapter 10 Understand Fractions 43

iii (one fourths)

Explanation:
The above figure shows that the rectangle is divided into 4 parts equally in which one parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one fourths.

Question 9.
Big Ideas Math Answers 3rd Grade Chapter 10 Understand Fractions 44

iii (one sixths)

Explanation:
The above figure shows that the triangle is divided into 8 parts equally in which 3 parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one eighths.

Question 10.
Divide the circle into 4 equal parts. Shade one part. What fraction of the whole is shaded?
Big Ideas Math Answers 3rd Grade Chapter 10 Understand Fractions 45

iii (one fourths)

Explanation:
The above figure shows that the circle is divided into 4 parts equally in which one parts are shaded. Therefore, the shaded part will be in the numerator and the total parts will be in the denominator. So, the fraction name of the shaded part is one fourths.

Question 11.
Divide the square into 3 eq