# Spectrum Math Grade 5 Chapter 4 Lesson 9 Answer Key Comparing and Ordering Fractions

Practice with the help of Spectrum Math Grade 5 Answer Key Chapter 4 Lesson 4.9 Comparing and Ordering Fractions regularly and improve your accuracy in solving questions.

## Spectrum Math Grade 5 Chapter 4 Lesson 4.9 Comparing and Ordering Fractions Answers Key

Use your knowledge of simplifying, finding common denominators, and finding equivalent fractions.

Compare each pair of fractions using <, >, or =.

Question 1.
a. $$\frac{19}{9}$$ _____ $$\frac{1}{10}$$
$$\frac{19}{9}$$ > $$\frac{1}{10}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 10:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
Common multiple of 9 and 10 = 90.
Equivalent fractions of:
$$\frac{19}{9}$$ × $$\frac{10}{10}$$ = $$\frac{190}{90}$$
$$\frac{1}{10}$$ × $$\frac{9}{9}$$ = $$\frac{9}{90}$$
=> $$\frac{190}{90}$$ is greater than $$\frac{9}{90}$$.

b. 1$$\frac{1}{12}$$ _____ 10$$\frac{1}{3}$$
1$$\frac{1}{12}$$ < 10$$\frac{1}{3}$$.

Explanation:
Multiples of 12:
12, 24, 36, 48, 60, 72, 84, 96, 120.
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
Common multiple of 3 and 12 = 12.
Equivalent fractions of:
1$$\frac{1}{12}$$ = {[(1 × 12) + 1] ÷ 12}
= [(12 + 1) ÷ 12]
= 13 ÷ 12
$$\frac{13}{12}$$ × $$\frac{1}{1}$$ = $$\frac{13}{12}$$
10$$\frac{1}{3}$$ = {[(10 × 3) + 1] ÷ 3}
= [(13 + 1) ÷ 3]
= 14 ÷ 3
$$\frac{14}{3}$$ × $$\frac{4}{4}$$ = $$\frac{56}{12}$$
$$\frac{13}{12}$$  is lesser than $$\frac{56}{12}$$.

c. 2$$\frac{1}{9}$$ _____ 10$$\frac{1}{2}$$
2$$\frac{1}{9}$$ < 10$$\frac{1}{2}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
Common multiple of 9 and 2 = 18.
Equivalent fractions of:
2$$\frac{1}{9}$$ = {[(2 × 9) + 1] ÷ 9}
= [(18 + 1) ÷ 9]
= 19 ÷ 9
$$\frac{19}{9}$$ × $$\frac{2}{2}$$ = $$\frac{38}{18}$$
10$$\frac{1}{2}$$ = {[(10 × 2) + 1] ÷ 2}
= [(12 + 1) ÷ 2]
= 13 ÷ 2
$$\frac{13}{2}$$ × $$\frac{9}{9}$$ = $$\frac{117}{18}$$
=> $$\frac{38}{18}$$ is lesser than $$\frac{117}{18}$$.

d. $$\frac{1}{9}$$ _____ $$\frac{6}{7}$$
$$\frac{1}{9}$$ < $$\frac{6}{7}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70.
Common multiple of 9 and 7 = 63.
Equivalent fractions of:
$$\frac{1}{9}$$ × $$\frac{7}{7}$$ = $$\frac{7}{63}$$
$$\frac{6}{7}$$ × $$\frac{9}{9}$$ = $$\frac{54}{63}$$
=> $$\frac{7}{63}$$ is lesser than $$\frac{54}{63}$$.

Question 2.
a. $$\frac{4}{6}$$ _____ $$\frac{5}{9}$$
$$\frac{4}{6}$$ > $$\frac{5}{9}$$.

Explanation:
Multiples of 6:
6, 12, 18, 24, 30, 36, 42, 48, 54, 60.
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Common multiple of 6 and 9 = 18.
Equivalent fractions of:
$$\frac{4}{6}$$ × $$\frac{3}{3}$$ = $$\frac{12}{18}$$
$$\frac{5}{9}$$ × $$\frac{2}{2}$$ = $$\frac{10}{18}$$
=> $$\frac{12}{18}$$ is greater than $$\frac{10}{18}$$.

b. $$\frac{4}{7}$$ _____ $$\frac{21}{11}$$
$$\frac{4}{7}$$ < $$\frac{21}{11}$$.

Explanation:
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84.
Multiples of 11:
11, 22, 33, 44, 55, 66, 77, 88, 99, 110.
Common multiple of 7 and 11 = 77.
Equivalent fractions of:
$$\frac{4}{7}$$ × $$\frac{11}{11}$$ = $$\frac{44}{77}$$
$$\frac{21}{11}$$ × $$\frac{7}{7}$$ = $$\frac{147}{77}$$
=> $$\frac{44}{77}$$ is lesser than $$\frac{147}{77}$$.

c. $$\frac{29}{9}$$ _____ 2$$\frac{1}{6}$$
$$\frac{29}{9}$$ > 2$$\frac{1}{6}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 6:
6, 12, 18, 24, 30, 36, 42, 48, 54, 60.
Common multiple of 9 and 6 = 18.
Equivalent fractions of:
$$\frac{29}{9}$$ × $$\frac{2}{2}$$ = $$\frac{58}{18}$$
2$$\frac{1}{6}$$ = {[(2 × 6) + 1] ÷ 6}
= [(12 + 1) ÷ 6]
= (13 ÷ 6)
= $$\frac{13}{6}$$ × $$\frac{3}{3}$$ = $$\frac{39}{18}$$
=> $$\frac{58}{18}$$ is greater than $$\frac{39}{18}$$.

d. $$\frac{26}{11}$$ _____ $$\frac{22}{11}$$
$$\frac{26}{11}$$ > $$\frac{22}{11}$$.

Explanation:
$$\frac{26}{11}$$ _____ $$\frac{22}{11}$$
=> $$\frac{26}{11}$$ is greater than $$\frac{22}{11}$$.

Question 3.
a. $$\frac{20}{8}$$ _____ $$\frac{12}{8}$$
$$\frac{20}{8}$$ > $$\frac{12}{8}$$.

Explanation:
$$\frac{20}{8}$$ _____ $$\frac{12}{8}$$
$$\frac{20}{8}$$ is greater than $$\frac{12}{8}$$.

b. $$\frac{4}{9}$$ _____ 7$$\frac{1}{4}$$
$$\frac{4}{9}$$ < 7$$\frac{1}{4}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 4:
4, 8, 12, 26, 20, 24, 28, 32, 36, 40.
Common multiple of 9 and 4 = 36.
Equivalent fractions of:
$$\frac{4}{9}$$ × $$\frac{4}{4}$$ = $$\frac{16}{36}$$
7$$\frac{1}{4}$$ = {[(7 × 4) + 1] ÷ 4}
= [(28 + 1) ÷ 4]
= (29 ÷ 4)
= $$\frac{29}{4}$$ × $$\frac{9}{9}$$ = $$\frac{261}{36}$$
=> $$\frac{16}{36}$$ is lesser than $$\frac{261}{36}$$.

c. 2$$\frac{11}{12}$$ _____ 1$$\frac{1}{5}$$
2$$\frac{11}{12}$$ > 1$$\frac{1}{5}$$.

Explanation:
Multiples of 12:
12, 24, 36, 48, 60, 72, 84, 96, 108, 120.
Multiples of 5:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60.
Common multiple of 12 and 5 = 60.
Equivalent fractions of:
2$$\frac{11}{12}$$ = {[(2 × 12) + 11] ÷ 12}
= [(24 + 11) ÷ 12]
= (35 ÷ 12)
= $$\frac{35}{12}$$ × $$\frac{5}{5}$$ = $$\frac{175}{60}$$.
1$$\frac{1}{5}$$ = {[(1 × 5) + 1] ÷ 5}
= [(5 + 1) ÷ 5]
= (6 ÷ 5)
= $$\frac{6}{5}$$ × $$\frac{12}{12}$$ = $$\frac{72}{60}$$.
=> $$\frac{175}{60}$$ is greater than $$\frac{72}{60}$$.

d. $$\frac{4}{2}$$ _____ $$\frac{29}{9}$$
$$\frac{4}{2}$$ < $$\frac{29}{9}$$.

Explanation:
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Common multiple of 2 and 9 = 18.
Equivalent fractions of:
$$\frac{4}{2}$$ × $$\frac{9}{9}$$ = $$\frac{36}{18}$$.
$$\frac{29}{9}$$ × $$\frac{2}{2}$$ = $$\frac{58}{18}$$.
=> $$\frac{36}{18}$$ is lesser than $$\frac{58}{18}$$.

Question 4.
a. $$\frac{2}{2}$$ _____ $$\frac{1}{3}$$
$$\frac{2}{2}$$ > $$\frac{1}{3}$$.

Explanation:
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
Common multiple of 2 and 3 = 6.
Equivalent fractions of:
$$\frac{2}{2}$$ × $$\frac{3}{3}$$ = $$\frac{6}{6}$$
$$\frac{1}{3}$$ × $$\frac{2}{2}$$ = $$\frac{2}{6}$$
=> $$\frac{6}{6}$$ is greater than $$\frac{2}{6}$$.

b. $$\frac{1}{3}$$ _____ 2$$\frac{11}{12}$$
$$\frac{1}{3}$$ < 2$$\frac{11}{12}$$.

Explanation:
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
Multiples of 12:
12, 24, 36, 48, 60, 72, 84, 96, 108, 120.
Common multiple of 3 and 12 =12.
Equivalent fractions of:
$$\frac{1}{3}$$ × $$\frac{4}{4}$$ = $$\frac{4}{12}$$
2$$\frac{11}{12}$$ = {[(2 × 12) + 11] ÷ 12}
= [(24 + 11) ÷ 12]
= (35 ÷ 12)
= $$\frac{35}{12}$$ × $$\frac{1}{1}$$ = $$\frac{35}{12}$$
=> $$\frac{4}{12}$$ is lesser than $$\frac{4}{12}$$.

c. 5$$\frac{1}{2}$$ _____ $$\frac{11}{12}$$
5$$\frac{1}{2}$$ > $$\frac{11}{12}$$.

Explanation:
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
Multiples of 12:
12, 24, 36, 48, 60, 72, 84, 96, 108, 120.
Common multiple of 2 and 12 = 12.
Equivalent fractions of:
5$$\frac{1}{2}$$ = {[(5 × 2) + 1] ÷ 2}
= [(10 + 1) ÷ 2]
= (11 ÷ 2)
= $$\frac{11}{2}$$ × $$\frac{6}{6}$$ = $$\frac{66}{12}$$
$$\frac{11}{12}$$ × $$\frac{1}{1}$$ = $$\frac{11}{12}$$
=> $$\frac{66}{12}$$ is greater than $$\frac{11}{12}$$.

d. $$\frac{13}{3}$$ _____ $$\frac{1}{5}$$
$$\frac{13}{3}$$ > $$\frac{1}{5}$$.

Explanation:
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
Multiples of 5:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50.
Common multiple of 3 and 5 = 15.
Equivalent fractions of:
$$\frac{13}{3}$$ × $$\frac{5}{5}$$ =  $$\frac{65}{15}$$
$$\frac{1}{5}$$ × $$\frac{3}{3}$$ =  $$\frac{3}{15}$$
=> $$\frac{65}{15}$$ is greater than $$\frac{3}{15}$$.

Question 5.
a. $$\frac{2}{5}$$ _____ 2$$\frac{3}{8}$$
$$\frac{2}{5}$$ < 2$$\frac{3}{8}$$.

Explanation:
Multiples of 5:
Multiples of 8:
Common multiple of 5 and 8 = 40.
Equivalent fractions of:
$$\frac{2}{5}$$ × $$\frac{8}{8}$$ = $$\frac{16}{40}$$
2$$\frac{3}{8}$$ = {[(2 × 8) + 3] ÷ 8}
= [(16 + 3) ÷ 8]
= (19 ÷ 8)
$$\frac{19}{8}$$ × $$\frac{5}{5}$$ = $$\frac{95}{40}$$
=> $$\frac{16}{40}$$ is lesser than $$\frac{16}{40}$$.

b. $$\frac{20}{11}$$ _____ $$\frac{25}{2}$$
$$\frac{20}{11}$$ _____ $$\frac{25}{2}$$.

Explanation:
Multiples of 11:
11, 22, 33, 44, 55, 66, 77, 88, 99, 110.
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30.
Common multiple of 11 and 2 = 22.
Equivalent fractions of:
$$\frac{20}{11}$$ × $$\frac{2}{2}$$ = $$\frac{40}{22}$$
$$\frac{25}{2}$$ × $$\frac{11}{11}$$ = $$\frac{275}{22}$$
=> $$\frac{40}{22}$$ is lesser than $$\frac{40}{22}$$.

c. $$\frac{1}{7}$$ _____ 7$$\frac{1}{3}$$
$$\frac{1}{7}$$ _____ 7$$\frac{1}{3}$$.

Explanation:
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70.
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
Common multiple of 7 and 3 = 21.
Equivalent fractions of:
$$\frac{1}{7}$$ × $$\frac{3}{3}$$ = $$\frac{3}{21}$$
7$$\frac{1}{3}$$ = {[(7 × 3) + 1] ÷ 3}
= [(21 + 1) ÷ 3]
= (22 ÷ 3)
$$\frac{22}{3}$$ × $$\frac{7}{7}$$ = $$\frac{154}{21}$$
=> $$\frac{3}{21}$$ is lesser than $$\frac{154}{21}$$.

d. $$\frac{1}{9}$$ _____ $$\frac{19}{6}$$
$$\frac{1}{9}$$ < $$\frac{19}{6}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 6:
6, 12, 18, 24, 30, 36, 42, 48, 54, 60.
Common multiple of 9 and 6 = 18.
Equivalent fractions of:
$$\frac{1}{9}$$ × $$\frac{2}{2}$$ = $$\frac{2}{18}$$
$$\frac{19}{6}$$ × $$\frac{3}{3}$$ = $$\frac{57}{18}$$
=> $$\frac{2}{18}$$ is lesser than $$\frac{57}{18}$$.

Question 6.
a. 3$$\frac{2}{10}$$ _____ $$\frac{26}{8}$$
3$$\frac{2}{10}$$ < $$\frac{26}{8}$$.

Explanation:
Multiples of 10:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
Multiples of 8:
8, 16, 24, 32, 40, 48, 56, 64, 72, 80.
Common multiple of 10 and 8 = 40.
Equivalent fractions of:
3$$\frac{2}{10}$$ = {[(3 × 10) + 2] ÷ 10}
= [(30 + 2) ÷ 10]
= (32 ÷ 10)
= $$\frac{32}{10}$$ × $$\frac{4}{4}$$ = $$\frac{128}{40}$$
$$\frac{26}{8}$$ × $$\frac{5}{5}$$ = $$\frac{130}{40}$$
=> $$\frac{128}{40}$$ is lesser than $$\frac{130}{40}$$.

b. $$\frac{2}{3}$$ _____ $$\frac{1}{2}$$
$$\frac{2}{3}$$ > $$\frac{1}{2}$$.

Explanation:
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30.
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20.
Common multiple of 3 and 2 = 6.
Equivalent fractions of:
$$\frac{2}{3}$$ × $$\frac{2}{2}$$= $$\frac{4}{6}$$
$$\frac{1}{2}$$ × $$\frac{3}{3}$$= $$\frac{3}{6}$$
=> $$\frac{4}{6}$$ is greater than $$\frac{3}{6}$$.

c. $$\frac{5}{9}$$ _____ $$\frac{1}{9}$$
$$\frac{5}{9}$$ > $$\frac{1}{9}$$.

Explanation:
$$\frac{5}{9}$$ _____ $$\frac{1}{9}$$ (same denominators)
=> $$\frac{5}{9}$$ is greater than $$\frac{1}{9}$$

d. $$\frac{19}{9}$$ _____ $$\frac{27}{4}$$
$$\frac{19}{9}$$ < $$\frac{27}{4}$$.

Explanation:
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Multiples of 4:
4, 8, 12, 26, 20, 24, 28, 32, 36, 40.
Common multiple of 9 and 4 = 36.
Equivalent fractions of:
$$\frac{19}{9}$$ × $$\frac{4}{4}$$ = $$\frac{76}{36}$$.
$$\frac{27}{4}$$ × $$\frac{9}{9}$$ = $$\frac{243}{36}$$.
=> $$\frac{76}{36}$$ is lesser than $$\frac{243}{36}$$.

Put the fractions in order from least to greatest.

Question 7.
$$\frac{1}{7}$$, $$\frac{6}{7}$$, 1$$\frac{2}{3}$$, 1$$\frac{8}{9}$$, 1$$\frac{1}{7}$$
Order from Least to greatest of $$\frac{1}{7}$$, $$\frac{6}{7}$$, 1$$\frac{2}{3}$$, 1$$\frac{8}{9}$$, 1$$\frac{1}{7}$$ is
$$\frac{9}{63}$$
$$\frac{6}{7}$$
$$\frac{72}{63}$$
$$\frac{105}{63}$$
$$\frac{357}{63}$$.

Explanation:
$$\frac{1}{7}$$, $$\frac{6}{7}$$, 1$$\frac{2}{3}$$, 1$$\frac{8}{9}$$, 1$$\frac{1}{7}$$
Common multiple of denominators: 7, 7, 3, 9, 7 = 63.
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27 and 30, 33, 36, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72,75.
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70.
Multiples of 9:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90.
Common multiple of denominators of 7, 3, 9, = 63.
=> Equivalent fractions of:
$$\frac{1}{7}$$ × $$\frac{9}{9}$$ = $$\frac{9}{63}$$

$$\frac{6}{7}$$ × $$\frac{9}{9}$$ = $$\frac{54}{63}$$

1$$\frac{2}{3}$$ = {[(1 × 3) + 2] ÷ 3}
= [(3 + 2) ÷ 3]
= 5 ÷ 3
= $$\frac{5}{3}$$ × $$\frac{21}{21}$$ = $$\frac{105}{63}$$

1$$\frac{8}{9}$$ = {[(1 × 9) + 8] ÷ 9}
= [(9 + 8) ÷ 3]
= 17 ÷ 3
$$\frac{17}{3}$$ × $$\frac{21}{21}$$ = $$\frac{357}{63}$$

1$$\frac{1}{7}$$ = {[(1 × 7) + 1] ÷ 7}
= [(7 + 1) ÷ 7]
= 8 ÷ 7
= $$\frac{8}{7}$$ × $$\frac{9}{9}$$ = $$\frac{72}{63}$$

Question 8.
$$\frac{7}{8}$$, $$\frac{4}{7}$$, 1$$\frac{1}{2}$$, $$\frac{2}{7}$$, 1$$\frac{1}{4}$$
Order from Least to greatest of $$\frac{7}{8}$$, $$\frac{4}{7}$$, 1$$\frac{1}{2}$$, $$\frac{2}{7}$$, 1$$\frac{1}{4}$$ is
$$\frac{2}{7}$$
$$\frac{4}{7}$$
$$\frac{7}{8}$$
1$$\frac{1}{4}$$
1$$\frac{1}{2}$$

Explanation:
$$\frac{7}{8}$$, $$\frac{4}{7}$$, 1$$\frac{1}{2}$$, $$\frac{2}{7}$$, 1$$\frac{1}{4}$$
Multiples of 8:
8, 16, 24, 32, 40, 48, 56, 64, 72, 80.
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70.
Multiples of 2:
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60.
Multiples of 4:
4, 8, 12, 26, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60.
Common multiple of denominators 8, 2, 7, 4 = 56.
$$\frac{7}{8}$$ × $$\frac{7}{7}$$ = $$\frac{49}{56}$$

$$\frac{4}{7}$$ × $$\frac{8}{8}$$ = $$\frac{32}{56}$$

1$$\frac{1}{2}$$ = {[(1 × 2) + 1] ÷ 2}
= [(2 + 1) ÷ 2]
= 3 ÷ 2
= $$\frac{3}{2}$$ × $$\frac{28}{28}$$ = $$\frac{84}{56}$$

$$\frac{2}{7}$$ × $$\frac{8}{8}$$ = $$\frac{16}{56}$$

1$$\frac{1}{4}$$ = {[(1 × 4) + 1] ÷ 4}
= [(4 + 1) ÷ 4]
= 5 ÷ 4
= $$\frac{5}{4}$$ × $$\frac{14}{14}$$ = $$\frac{70}{56}$$

Question 9.
$$\frac{5}{6}$$, 1$$\frac{4}{7}$$, $$\frac{1}{6}$$, 1$$\frac{1}{3}$$, 1$$\frac{7}{8}$$
Order from Least to greatest of $$\frac{5}{6}$$, 1$$\frac{4}{7}$$, $$\frac{1}{6}$$, 1$$\frac{1}{3}$$, 1$$\frac{7}{8}$$ is
$$\frac{1}{6}$$
$$\frac{5}{6}$$
1$$\frac{1}{3}$$
1$$\frac{4}{7}$$
1$$\frac{7}{8}$$

Explanation:
$$\frac{5}{6}$$, 1$$\frac{4}{7}$$, $$\frac{1}{6}$$, 1$$\frac{1}{3}$$, 1$$\frac{7}{8}$$
Multiples of 6:
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180.
Multiples of 7:
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175.
Multiples of 8:
8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200.
Multiples of 3:
3, 6, 9, 12, 15, 18, 21, 24, 27,30, 33, 36, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 131, 134, 137, 141, 143, 147, 150, 153, 156, 159, 162, 165, 168, 172, 175.
Common multiple of denominators of 6, 7, 3, 8 = 168.
$$\frac{5}{6}$$ × $$\frac{28}{28}$$ = $$\frac{140}{168}$$

1$$\frac{4}{7}$$ = [{[(1 × 7) + 4] ÷ 7}
= [(7 + 4) ÷ 7]
= 11 ÷ 7
$$\frac{11}{7}$$ × $$\frac{24}{24}$$ = $$\frac{264}{168}$$

$$\frac{1}{6}$$ × $$\frac{28}{28}$$  = $$\frac{28}{168}$$

1$$\frac{1}{3}$$ = {[(1 × 3) + 1] ÷ 3}
= [(3 + 1) ÷ 3]
= 4 ÷ 3
$$\frac{4}{3}$$ × $$\frac{56}{56}$$  = $$\frac{224}{168}$$

1$$\frac{7}{8}$$ = {[(1 × 8) + 7] ÷ 8}
= [(8 + 7) ÷ 8]
= 15 ÷ 8
$$\frac{15}{8}$$ × $$\frac{21}{21}$$  = $$\frac{315}{168}$$