# Spectrum Math Grade 6 Chapter 2 Lesson 2 Answer Key Using Visual Models to Divide Fractions

Go through the Spectrum Math Grade 6 Answer Key Chapter 2 Lesson 2.2 Using Visual Models to Divide Fractions and get the proper assistance needed during your homework.

## Spectrum Math Grade 6 Chapter 2 Lesson 2.2 Using Visual Models to Divide Fractions Answers Key

Fraction bars can be used to help divide fractions. When dividing $$\frac{1}{3}$$ by $$\frac{1}{6}$$, you are finding out how many sixths are equal to $$\frac{1}{3}$$.
When you line up the fraction bars and divide them into the appropriate pieces, you can see that $$\frac{2}{6}$$ is equal to $$\frac{1}{3}$$.
Therefore,
$$\frac{1}{3}$$ ÷ $$\frac{1}{6}$$ = 2

Use the fraction bars to solve the problems. Write answers in simplest form.

Question 1.
$$\frac{1}{2}$$ ÷ $$\frac{1}{4}$$ = _____ Simplest form of $$\frac{1}{2}$$ ÷ $$\frac{1}{4}$$ is 2. Explanation:
$$\frac{1}{2}$$ ÷ $$\frac{1}{4}$$
= $$\frac{1}{2}$$ × $$\frac{4}{1}$$
= $$\frac{1}{1}$$ × $$\frac{2}{1}$$
= $$\frac{2}{1}$$
= 2.

Question 2.
$$\frac{2}{3}$$ ÷ $$\frac{1}{6}$$ = _____ Simplest form of $$\frac{2}{3}$$ ÷ $$\frac{1}{6}$$ is 4. Explanation:
$$\frac{2}{3}$$ ÷ $$\frac{1}{6}$$
= $$\frac{2}{3}$$ × $$\frac{6}{1}$$
= $$\frac{2}{1}$$ × $$\frac{2}{1}$$
= $$\frac{4}{1}$$
= 4.

Question 3.
$$\frac{3}{5}$$ ÷ $$\frac{1}{15}$$ = _____ Simplest form of $$\frac{3}{5}$$ ÷ $$\frac{1}{15}$$ is 9. Explanation:
$$\frac{3}{5}$$ ÷ $$\frac{1}{15}$$
= $$\frac{3}{5}$$ × $$\frac{15}{1}$$
= $$\frac{3}{1}$$ × $$\frac{3}{1}$$
= $$\frac{9}{1}$$
= 9.

Use the fraction bars to solve the problems. Write answers in simplest form.

Question 1.
$$\frac{1}{8}$$ ÷ $$\frac{1}{2}$$ = _____ Simplest form of $$\frac{1}{8}$$ ÷ $$\frac{1}{2}$$ is $$\frac{1}{4}$$. Explanation:
$$\frac{1}{8}$$ ÷ $$\frac{1}{2}$$
= $$\frac{1}{8}$$ × $$\frac{2}{1}$$
= $$\frac{1}{4}$$ × $$\frac{1}{1}$$
= $$\frac{1}{4}$$

Question 2.
$$\frac{1}{10}$$ ÷ $$\frac{2}{5}$$ = _____ Simplest form of $$\frac{1}{10}$$ ÷ $$\frac{2}{5}$$ is $$\frac{1}{4}$$. Explanation:
$$\frac{1}{10}$$ ÷ $$\frac{2}{5}$$
= $$\frac{1}{10}$$ × $$\frac{5}{2}$$
= $$\frac{1}{2}$$ × $$\frac{1}{2}$$
= $$\frac{1}{4}$$

Question 3.
$$\frac{1}{12}$$ ÷ $$\frac{1}{4}$$ = _____ Simplest form of $$\frac{1}{12}$$ ÷ $$\frac{1}{4}$$ is $$\frac{1}{3}$$. Explanation:
$$\frac{1}{12}$$ ÷ $$\frac{1}{4}$$
= $$\frac{1}{12}$$ × $$\frac{4}{1}$$
= $$\frac{1}{3}$$ × $$\frac{1}{1}$$
= $$\frac{1}{3}$$

Question 4.
$$\frac{2}{9}$$ ÷ $$\frac{1}{3}$$ = _____ Simplest form of $$\frac{2}{9}$$ ÷ $$\frac{1}{3}$$ is $$\frac{2}{3}$$. $$\frac{2}{9}$$ ÷ $$\frac{1}{3}$$
= $$\frac{2}{9}$$ × $$\frac{3}{1}$$
= $$\frac{2}{3}$$ × $$\frac{1}{1}$$
= $$\frac{2}{3}$$